期刊文献+

一种新的ICA域图像融合算法 被引量:5

Novel ICA Domain Multimodal Image Fusion Algorithm
下载PDF
导出
摘要 针对红外和可见光图像的特点,结合Mitianoudis提出的ICA域图像融合方法,本文提出了一种改进的ICA域多模图像融合算法。该方法根据Mitianoudis的方法,通过训练得到的基函数对图像进行线性变换,在变换域中将图像分割成不同的区域,对活跃区域采用绝对值取大的融合规则,而对非活跃区域则按照目标传感器图像的区域分割结果分别采取不同的融合规则,最后反变换得到融合图像。实验结果表明了本文方法的有效性。 Aimed at features of infrared and visible images and combined with Mitianoudis's fusion method, an improved Independent Component Analysis (ICA) domain multimodal image fusion algorithm was presented. According to Mitianoudis, linear transformation was performed to the source images using ICA bases obtained from offline training. Then the image in ICA domain was segmented into different regions: active regions and non-active regions. For the active region, the "max-abs" fusion rule was used, while for the non-active region, different fusion rules were used according to the region segmentation result of the target sensor image. Finally, the fused image was reconstructed by the inverse transform. Experiment results demonstrate the effectiveness of the method.
出处 《光电工程》 EI CAS CSCD 北大核心 2008年第5期129-134,共6页 Opto-Electronic Engineering
关键词 图像融合 独立分量分析 区域分割 融合规则 image fusion independent component analysis region segmentation fusion rules
  • 相关文献

参考文献8

  • 1Piella, Gemma. A general framework for multiresolution image fusion: from pixels to regions [J]. Information Fusion, 2003, 4(4): 259-280.
  • 2Nikolov S G, Lewis J J, O'Callaghan R J, et al. Hybrid fused display: between pixel- and region-based image fusion [C]// Proe.7^th Int. Conf. on Information Fusion. Svensson Per. Stockholm, Sweden: [s.n.], 2004: 1072-1079.
  • 3HyvrinenA, KarhunenJ, Oja E. Independent Component Analysis[M]. London, U K: Wiley, 2001.
  • 4Mitianoudis Nikolaos, Stathaki Tania. Pixel-based and region-based image fusion schemes using ICA bases [J]. Information Fusion, 2007, 8(2): 131-142.
  • 5Mitianoudis Nikolaos, Stathaki Tania. Adaptive Image Fusion using ICA Bases [EB/OL]. http: //www.commsp.ee.ic.ac.uk /-nikolao/pdf//CASSP2006.pdf, May 2006.
  • 6Hyvarinen Aapo. Sparse code shrinkage: Dnoising of nongaussian data by maximum likelihood estimation [J]. Neural Computation, 1999, 11(7): 1739-1768.
  • 7Xydeas C S, Petrovic V. Objective Image Fusion Performance Measure [J]. Electronics Letters, 2000, 36(4): 308-309.
  • 8QU Gui-hong, ZHANG Da-li, YAN Ping-fan. Information measure for performance of image fusion [J]. Electronics Letters, 2002, 38(7): 313-315.

同被引文献67

引证文献5

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部