期刊文献+

Algebraic-Geometric Solution to (2+1)-Dimensional Sawada-Kotera Equation 被引量:1

Algebraic-Geometric Solution to (2+1)-Dimensional Sawada-Kotera Equation
下载PDF
导出
摘要 Special solution of the (2+1)-dimensional Sawada Kotera equation is decomposed into three (0+1)- dimensional Bargmann flows. They are straightened out on the Jacobi variety of the associated hyperelliptic curve. Explicit algebraic-geometric solution is obtained on the basis of a deeper understanding of the KdV hierarchy.
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2008年第1期31-36,共6页 理论物理通讯(英文版)
基金 The project supported by the Special Funds for Major State Basic Research Project under Grant No.G2000077301
关键词 (2+1)-dimensional Sawada Kotera equation algebraic-geometric solution higher KdV equations (2+1)维Sawada Kotera方程 代书几何算法 高KdV方程 数学物理
  • 相关文献

参考文献16

  • 1M.J. Ablowitz and P.A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, Cambridge University Press, Cambridge (1991).
  • 2M.J. Ablowitz and H. Segur, Solitons and the Inverse Scattering Transform, SIAM, Philadelphia (1981).
  • 3E.D. Belokolos, A.I. Bobenko, V.Z. Enolskii, A.R. Its, and V.B. Matveev, Algebra-Geometric Approach to Nonlinear Integrable Equations, Springer, Berlin (1994).
  • 4C.W. Cao, Acta Math. Sin., New Series 7 (1991) 216.
  • 5C.W. Cao, Acta Scientiarum Naturalium Universitatis Pekinensis 28, 1 (1992) 62.
  • 6C.W. Cao, Y.T. Wu, and X.G. Geng, J. Math. Phys. 40 (1999) 3948.
  • 7Y. Cheng and Y.S. Li, J. Phys. A: Math. Gen. 25 (1992) 419.
  • 8B. Konopelchenko and V. Dubrovsky, Phys. Lett. A 102 (1984) 45.
  • 9K. Sawada and J. Kotera, Prog. Theor. Phys. 51 (1974) 1355.
  • 10J.D. Gibbon and R.K. Dodd, Proc. Roy. Soc. London A 358 (1977) 287.

同被引文献4

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部