期刊文献+

Pipe Shape Solution of Faddeev Model 被引量:1

Pipe Shape Solution of Faddeev Model
下载PDF
导出
摘要 Utilizing the results that the Faddeev model is equivalent to the mesonic sector of the SU(2) Skyrme model, where the baryon number current vanishes everywhere, some exact solutions including the vortex solutions of the Faddeev model axe discussed. The solutions are classified by the 2, the new multisoliton solutions are obtained and the pipe shape found. first Chern number. When the Chern number equals distribution of the energy density of the solutions are
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2008年第2期428-430,共3页 理论物理通讯(英文版)
基金 National Natural Science Foundation of China under Grant No.10601031 the Natural Science Foundation of Shanghai Municipal Education Commission under Grant No.05LZ08 the Foundation of Shanghai University of Electric Power under Grant No.K2005-01
关键词 pipe shape vortex solution Faddeev model 粒子物理学 Faddeev模型 漩涡解 重子
  • 相关文献

参考文献8

  • 1L. Faddeev, Lett. Math. Phys. 1 (1976) 289.
  • 2L. Faddeev and A.J. Niemi, Nature (London) 387 (1997) 58.
  • 3T.H.R. Skyrme, Proc. Roy. Soc. A247 (1958) 260.
  • 4T.H.R. Skyrme, Nucl. Phys. 31 (1961) 556.
  • 5R.A. Battye and P.M. Sutcliffe, Phys. Rev. Lett. 81 (1998) 4798.
  • 6L. Faddeev and A.J. Niemi, Phys. Rev. Lett. 82 (1999) 1624.
  • 7M. Hirayama and C.G. Shi, Phys. Rev. D 69 (2004) 045001.
  • 8Y. M. Cho, Phys. Rev. Lett. 87 (2001) 252001.

同被引文献10

  • 1郭柏灵.孤立子[M].北京.科学出版社.1992.
  • 2FENG Z G,KUANG J. Boundary value problem for a non- linear equation of mixed type [ J ]. Differential Equations, 2013(10) :3 029-3 052.
  • 3LIU S Y,Wang G T,ZHANG L H G. Existence results for a coupled system of nonlinear neutral fractional differential e- quations [ J]. Applied Mathematics Letters, 2013,26 ( 12 ) : 1 120-1 124.
  • 4FENG H Y P, LI S J. The stability for a one-dimensional wave equation with nonlinear uncertainty on the boundary [ J]. Nonlinear Analysis ,2013 ( 89 ) :202-207.
  • 5ADAM C, NAYA C, SANCHEZ-GUILLEN J, et al. Rota- tional-vibrational coupling in the BPS Skyrme model of bary- ons [ J ]. Physics Letters,2013 (4-5) :892-895.
  • 6SHNIR Y, ZHILIN G. Sphaleron solutions of the Skyrme model from Yang-Mills holonomy [ J ]. Physics Letters, 2013 ( 1-3 ) :236-240.
  • 7FADDEEV L. Some comments on the many dimensional so- litions [ J ]. Letters In Mathematical Physics, 1976 ( 1 ) : 289-293.
  • 8SHI C G, HIRAYAMA. M. Solitonic solutions of Faddeev model [ J ]. Journal of Mathematical Physics. , 2012,53 (2) : 22 -31.
  • 9范恩贵,张鸿庆.非线性孤子方程的齐次平衡法[J].物理学报,1998,47(3):353-362. 被引量:266
  • 10刘式适,傅遵涛,刘式达,赵强.Jacobi椭圆函数展开法及其在求解非线性波动方程中的应用[J].物理学报,2001,50(11):2068-2073. 被引量:351

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部