期刊文献+

Electron-Phonon Interaction in an Annular Quantum Dot

Electron-Phonon Interaction in an Annular Quantum Dot
下载PDF
导出
摘要 限制纵光(LO ) 声子并且表面光(那么) 一个自立的环形的圆柱的量点的声子模式在电介质的框架以内被导出连续统近似。在那里存在,这被发现二种类型那么声子模式:那么超过(TSO ) 模式和方面那么(SSO ) 在一个圆柱的量体环的模式。CdS 体环系统上的数字计算被执行了。结果表明 SSO 模式的二个不同答案主要在体环的内部或外部的表面散布。分散关系和在一个量体环的声子的联合目的与在一个圆柱的量点的那些相比。二不同结构的分散关系是类似的,这被发现,但是在量体环的声子电子相互作用的联合目的在量点比那大。在系统描述有电子的免费声子模式和他们的相互作用的 Hamiltonians 也被导出。 The confined longitudinal-optical (LO) phonon and surface-optical (SO) phonon modes of a free-standing annular cylindrical quantum dot are derived within the framework of dielectric continuum approximation. It is found that there exist two types of SO phonon modes: top SO (TSO) mode and side SO(SSO) mode in a cylindrical quantum annulus. Numerical calculation on CdS annulus system has been performed. Results reveal that the two different solutions of SSO mode distribute mainly at the inner or outer surfaces of the annulus. The dispersion relations and the coupling intensions of phonons in a quantum annulus are compared with those in a cylindrical quantum dot. It is found that the dispersion relations of the two different structures are similar, but the coupling intension of the phonon-electron interaction in quantum annulus is larger than that in quantum dot. The Hamiltonians describing the free phonon modes and their interactions with electrons in the system are also derived.
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2008年第2期493-503,共11页 理论物理通讯(英文版)
基金 the Scientific and Technology Project of Guangzhou Municipal Government under Grant No.2004J1-C0327
关键词 电子-声子相互作用 量子点 量子环 电介质连续近似 dielectric continuum approximation, phonon modes, electron-phonon interaction, annular, quantum dots
  • 相关文献

参考文献28

  • 1D. Granados and J.M. Garcia, J. Crystal Growth 251 (2003) 213.
  • 2A. Lorke, R.J. Luyken, M. Fricke, J.P. Koutthaus, G.M. Ribeiro, J.M. Garcia, and P.M. Petroff, Microelectronic Engineering 47 (1999) 95.
  • 3J.L. Zhu and X. Chen, Phys. Rev. B 50 (1994) 4497.
  • 4C.M. Lee, W.Y. Ruan, J.Q. Li, and Richard C.H. Lee, Solid State Commun. 132 (2004) 737.
  • 5Y. Kayanuma, Phys. Rev. B 44 (1991) 13085.
  • 6D. Leonard, M. Krishnamurthy, C.M. Reabaar, and P.M. Petroff, Appl. Phys. Lett. 63 (1993) 3203
  • 7S. Nonura, Y. Segawa, and T. Kobayashi, Phys. Rev. B 49 (1994) 13571.
  • 8M.H. Degani and G.A. Faria, Phys. Rev. B 42 (1990) 19950.
  • 9K. Takehana, F. Pulizzi, A. Patan, M. Henini, P.C. Main, L. Eaves, D. Granados, and J.M. Garcia, J. Crystal Growth 251(2003) 155.
  • 10B.C. Lee, O. Voskoboynikov, and C.P. Lee, Physica E 24 (2004) 87.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部