摘要
主要研究高阶色散对光孤子传输的影响,首先通过分步傅里叶法(SSFM)分析非线性薛定谔方程,然后综合考虑高阶色散对光孤子共同作用的结果,得出三阶色散对孤子传输的影响独立于其它的效应,也使得孤子脉冲在其中一个边沿产生不为零的衰减振荡,并且使脉冲展宽,严重影响了孤子的传输。最后,对参数的选择进行控制,以求能够对高阶色散的补偿进行研究。
In this paper, the influence of high order dispersion to the fs solitons is studied. First, we analyzed nonlinear schrodinger equation by split-step Fourier transform method (SSFM). Then the high order dispersion affect is taken into account. The results show that the influence of three-order dispersion(TOD)is independently to other effects. And it also causes the soliton pulse produce attenuation oscillation in one edge, it is not zero. The TOD causes the soliton pulse stretch and affects the transmission seriously. At last, change the choice of parameter, in order to study the compensation of high order dispersion.
出处
《光学仪器》
2008年第2期66-69,共4页
Optical Instruments
关键词
高阶色散
非线性薛定谔方程
分步傅里叶法(SSFM)
high order dispersion
nonlinear schrodinger equation
split-step Fourier transform method(SSFM)