期刊文献+

一类带奇异项的半线性椭圆型方程的不变解

Invariational Solutions of a Singular Elliptic Equation
下载PDF
导出
摘要 主要研究一类带奇异项的半线性椭圆型方程在,Ω=Ω1×Rd条件下的不变解的存在情况。若Sλμ,(Ω,G)<S0μ(Ω,G),则Sλμ(Ω,G),可以达到,根据这个思路来证明解的存在性。当d≥2时,方程(1)至少有一个不变解;当d=1且λ足够小的条件下,方程(1)至少有一个不变解。 This paper is devoted to the existence of invariant solutions of a singular elliptic under Ω=Ω1×R^d We have proved the existence of these solutions using the idea of proving that Sλ^μ(Ω,G)is achieved if Sλ^μ(Ω,G)〈So^μ(Ω,G)When d≥2there is at least one invariant solution of Equation (1); When d= 1, the situation is quite different, and we can assure the existence of solution only if λ is small enough.
作者 许勇强
机构地区 仰恩大学数学系
出处 《莆田学院学报》 2008年第2期32-35,共4页 Journal of putian University
关键词 奇异项 不变解 集中紧性 singularity invariant solutions concentration-compactness
  • 相关文献

参考文献8

  • 1Willem M.Minimax Theorems[]..1996
  • 2Ramos M,Wang Z Q,Willem M.Positive solutionsfor elliptic equations with critical growth in unboundeddomains[].Calculus of Variations and Differential Equations.2000
  • 3Wang S.The existence of a positive solution ofsemilinear elliptic equations with limitingsobolevexponent[].Proceedings of the Royal Society of Edinburgh.1991
  • 4H.Brezis,and L.Nirenberg.Positive solutions of nonlinear elliptic equations involving critical exponents[].Communications in Pure Applied Mathematics.1983
  • 5Jannelli E.The role played by space dimension in elliptic critical problems[].Journal of Differential Equations.1999
  • 6Z. -Q. Wang and M. Willem.Singular Minimization Problems[].Journal of Differential Equations.2000
  • 7D. Ruiz and M. Willem.Elliptic problems with critical exponents and Hardy potentials[].Journal of Differential Equations.2003
  • 8D. Smets,and A. Tesei.On a class of singular elliptic problems with first order terms[].Adv Diff Equations.2003

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部