期刊文献+

Wronskian and Grammian Determinant Solutions for a Variable-Coefficient Kadomtsev-Petviashvili Equation 被引量:2

Wronskian and Grammian Determinant Solutions for a Variable-Coefficient Kadomtsev-Petviashvili Equation
下载PDF
导出
摘要 In this paper, we derive the bilinear form for a variable-coefficient Kadomtsev Petviashvili-typed equation. Based on the bilinear form, we obtain the Wronskian determinant solution, which is proved to be indeed an exact solution of this equation through the Wronskian technique. In addition, we testify that this equation can be reduced to a Jacobi identity by considering its solution as a Grammian determinant by means of Pfaffian derivative formulae.
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2008年第5期1125-1128,共4页 理论物理通讯(英文版)
基金 The project supported by the Key Project of the Ministry of Education under Grant No.106033 the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No.20060006024 National Natural Science Foundation of China under Grant Nos.60372095 and 60772023 the Open Fund of the State Key Laboratory of Software Development Environment under Grant No.SKLSDE07-001 Beijing University of Aeronautics and Astronautics,and the National Basic Research Program of China(973 Program)under Grant No.2005CB321901
关键词 variable-coefficient Kadomtsev-Petviashvili equation Wronskian determinant Grammian deter-minant PFAFFIAN Jacobi identity 变量系数 Kadomtsev-Petviashvili方程 行列式 恒等式
  • 相关文献

参考文献49

  • 1M.P. Barnett, J.F. Capitani, J. Von Zur Gathen, and J. Gerhard, Int. J. Quantum Chem. I00 (2004) 80.
  • 2B. Tian and Y.T. Gao, Phys. Lett. A 340 (2005) 449.
  • 3B. Tian and Y.T. Gao,Phys.Lett.A 362 (2007) 283.
  • 4B. Tian and Y.T. Gao, Phys. Plasmas 12 (2005) 054701.
  • 5X. Lu, H.W. Zhu, X.H. Meng, Z.C. Yang, and B. Tian, J. Math. Anal. Appl. 336 (2007) 1305.
  • 6W.P. Hong, Phys. Lett. A 361 (2007) 520.
  • 7Y.T. Gao and B. Tian, Phys. Plasmas 13 (2006) 112901.
  • 8Y.T. Gao and B. Tian, Phys. Plasmas (Lett.) 13 (2006) 120703.
  • 9Y.T. Gao and B. Tian, Phys. Lett. A 349 (2006) 314.
  • 10Y.T. Gao and B. Tian, Phys. Lett. A361 (2007) 523.

同被引文献15

  • 1MEL'NIKOV V K. Interaction of solitary waves in the system described by the Kadontsev-Petviashvili equation with a self-consistent source Common[J]. Math Phys, 1989, 126: 201-215.
  • 2XIAO Ting. Generalized Darboux transformations for the KP equation with self-consistent sources[J]. Phys A: Math Gen, 2004, 37(28): 7143-7154.
  • 3DENG Shu-fang. The multisoliton solutions of the KP equation with self-consistent sources[J]. Phys Soc Japan, 2003, 72: 2184-2191.
  • 4MEL'NIKOV V K. Integration of the Korteweg-de Vries equation with a source[J]. Inverse Problems, 1990, 6(2): 233-241.
  • 5XIAO Ting. Backlund transformations for the KP and m-KP hierarchies with self-consistent sources[J]. Phys A: Math Gen, 2006, 39(1): 139-153.
  • 6ANTONOWICZ M. Soliton hierarchies with sources and Lax representation for restricted flows Inverse Problems[J]. 1993, 9(2): 201-213.
  • 7LEON J. Solution of an initial-boundary value problem for coupled nonlinear waves[J]. Phys A: Math Gen, 1990, 23(8): 1385-1397.
  • 8XIAO Ting. Backlund transformations for the constrained dispersionless hierarchies and dispersionless hierarchies with self-consistent sources[J]. Inverse Problems. 2006, 22(3): 869-882.
  • 9HU Xing-biao. Construction of Dkp and BKP equation with self-consistent sources[J]. Inverse Problems, 2006, 22(5): 1903-1915.
  • 10HU Xing-biao. New type of Kadomtsev-Petviashvili equation with self-consistent sources and its bilinear Backlund transformations[J]. Inverse Problems, 2007, 23(4): 1433-1445.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部