摘要
为讨论一个拟线性双曲—抛物奇异摄动问题的渐近展开问题,首先用能量方法建立稳定不等式,然后利用双重迭代法对原问题进行渐近展开,最后用稳定不O(ε3)逼近式,从而证明了渐近解的一致有效性.
A singular perturbation problem of a quasi-linear hyperbolic-parabolic partial differential equa-tion is discussed. In order to discuss the asymptotic expansion of the problem,the energy method is applied to establish the continuous stability inequality and the 3-order asymptotic expansion of the solution to this problem with respect to small parameters. Thus the uniform effectiveness of the asymptotic expansion is proved.
出处
《甘肃科学学报》
2008年第1期20-23,共4页
Journal of Gansu Sciences
基金
解放军炮兵学院青年后备人才基金(20070523)
关键词
拟线性奇异摄动问题
双曲一抛物偏微分方程
连续稳定不等式
小参数
quasi-linear singular perturbation
hyperbolic-parabolic partial differential equation
eontinu ous stability inequality
small parameter