期刊文献+

基于显著性加权的Mean Shift跟踪方法 被引量:10

A new significance weighted mean shift tracking method
下载PDF
导出
摘要 复杂背景下运动目标跟踪一直是计算机视觉的重要研究方向之一。针对这类问题,提出了一种基于显著性加权的Mean Shift跟踪算法。首先根据目标上不同区域和背景的差别大小,给目标每个区域赋予不同的权值。然后将权值与Mean Shift算法结合起来对目标进行跟踪。实验表明,在复杂背景下,新算法仍然可以有效、准确地跟踪运动目标。 To track the moving target in the cluttering background is one of the most important research fields in computer vision. A new significance weighted mean shift tracking method is proposed. This new tracking algorithm sets the different weights to every parts of the target according to the variance between the target and the background, and tracking the target by the significance weighted mean shift algorithm (SWMS). Experimental results show that the new method can effectively and accurately track moving target in the cluttering background.
出处 《光学技术》 CAS CSCD 北大核心 2008年第3期404-407,共4页 Optical Technique
关键词 运动目标跟踪 显著性加权 MEANSHIFT moving target track significance weighted mean shift
  • 相关文献

参考文献4

  • 1Stauffer C, Grimson W E L. Adaptive background mixture models for real time tracking [J]. IEEE Computer Vision and Pattern Recognition, 1999,10: 246-252.
  • 2Comaniciu D, Ramesh V, Meer P. Real time tracking of Non-rigid obejctsusing mean shift[J]. IEEE Computer Vision and Pattern Recognition, 2000,11: 142-149.
  • 3Isard M, Blake A. Condensation-conditional density propagation for visual tracking [J]. International Journal of computer Vision, 1998,29(1): 5-28.
  • 4Castleman K R. Digital image processing[M], 北京:电子工业出版社,2001.408-410.

同被引文献166

  • 1彭宁嵩,杨杰,刘志,张风超.Mean-Shift跟踪算法中核函数窗宽的自动选取[J].软件学报,2005,16(9):1542-1550. 被引量:165
  • 2侯志强,韩崇昭.视觉跟踪技术综述[J].自动化学报,2006,32(4):603-617. 被引量:255
  • 3邹海荣,龚振邦,罗均.无人飞行器地面移动目标跟踪系统研究现状与展望[J].宇航学报,2006,27(B12):233-236. 被引量:5
  • 4王长军,朱善安.基于Mean Shift的目标平移与旋转跟踪[J].中国图象图形学报,2007,12(8):1367-1371. 被引量:10
  • 5Fukunaga K, Hostetler L D. The Estimation of the Gradient of a Density Function, with Applications in Pattern Recogni- tion[J]. IEEE Trans Information Theory, 1975,21 ( 1 ) : 32-40.
  • 6Cheng Y. Mean Shift, Mode Seeking and Clustering[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1995,17(8):790-799.
  • 7Comaniciu D, Ramesh V, Meer P. Real-time Tracking of Non-rigid Objects Using Mean Shift[C]//Proc IEEE Conf on CVPR. [S. 1. ] : IEEE, 2000:142-149.
  • 8Comaniciu D,Ramesh V,Meer P. Kernel-based Object Tracking[J]. IEEE Trans on Pattern Analysis and Machine Intel- ligence, 2003,25(5) : 564-575.
  • 9Okuma K,Taleghani A,De Freitas N, et al. A Boosted Particle Flter:Multitarget Detection and Tracking[C]//Proc of the European Conference on Computer Vision. Prague: IEEE, 2004:28-39.
  • 10Maggio E,Cavallaro A. Multi-part Target Representation for Color Tracking[C]//Proe IEEE Int Conference on Image Processing (ICIP). Genoa: IEEE, 2005 : 729-732.

引证文献10

二级引证文献104

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部