期刊文献+

自适应总体变差图像去噪算法的扩散系数研究

STUDY ON DIFFUSION COEFFICIENT OF ADAPTIVE TOTAL VARIATION IMAGE DENOISING ALGORITHM
下载PDF
导出
摘要 自适应总体变差算法可以解决总体变差算法无法实现去噪的同时保留图像的细节纹理。对该算法的扩散系数研究表明当算法满足如下性质:(′|grad(I)|)≥0,(″|grad(I)|)≥0;当扩散系数法向量方向的值为(′|grad(I)|)/|grad(I)|,扩散系数切向量方向的值为(″|grad(I)|),并且|grad(I)|→+∞时,法向量方向的值趋于0,法向量与切向量的比值趋于0;当|grad(I)|→0时,法向量方向和切向量方向的值均大于0时可以取得较好的试验结果,并认为最小曲面函数是合适的扩散系数。 Though the adaptive total variation presented algorithm a solution to preserving the detailed texture in image when denoising which the total variation algorithm failed to do, the diffusion coefficient has not been further studied. The calculation in this paper shows that when certain properties are satisfied the algorithm can be implemented with a better experimental outcome in denoising. It was concluded the minimal surfaces function be the appropriate diffusion coefficient.
出处 《计算机应用与软件》 CSCD 北大核心 2008年第5期40-41,71,共3页 Computer Applications and Software
基金 国家自然科学基金项目(60472061)。
关键词 自适应总体变差 图像去噪 扩散系数 Adaptive total variation Image denoising Diffusion coefficient
  • 相关文献

参考文献6

  • 1Sonka M,Hlavac V,Boyle R.图像处理分析与机器视觉.艾海舟,武勃,等译.北京:人民邮电出版社,2003:39-154.
  • 2Perona P, Malik J. Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(7) : 629-639.
  • 3Blanceferaud L, Charbonnier P, Aubert G, et al. M. Nonlinear image processing: modeling and fast algorithm for regularization with edge detection. In Proc. IEEE ICIP-95, 1995, 1:474 -477.
  • 4Mumford D. The Bayesian Rationale for Energy Functionals, Geometry Driven Diffusion in Computer Vision, Kluwer Academic Publishers, 1994:235 - 274.
  • 5Gilboa G, Sochen N, Yehoshua Y Z. Texture Preserving Variational Denoising Using an Adaptive Fidelity Term, Proc, VLSM 2003.
  • 6肖亮,吴慧中,韦志辉,刘扬.新型梯度倒数加权滤波器[J].小型微型计算机系统,2004,25(7):1401-1405. 被引量:3

二级参考文献6

  • 1[1]Wang D, Vagnucci A. Gradient inverse weighting smoothing schema and the evaluation of its performance[J]. Computer Graphics and Image Processing,1981, 15:1054-1065.
  • 2[2]Rudin L, Osher S, Fatemi E. Nonlinear total variation based noise removel algorithms[J]. Physica D,1992, 60:259-268.
  • 3[3]Tony chan, Shan Jian-hong. Mathematical models for local non-texture inpainting[J]. SIAM. Applied Mathematical,2001,62(3):1019-1043.
  • 4[4]Cobson D, Vogel C. Convergence of an iterative method for total variation denoising[J]. SIAM Journal of Numerical Analysis,1997,34(5):1779-1791.
  • 5[5]Chambolle A, Lions P. Image recovery via total variational minimization and related problem[J]. Numerical Mathmatica,1997,76:167-188.
  • 6[6]Tony F.chan. The dgital TV filter and nonlinear denoising[J]. IEEE Transaction on Image Processing,2001, 10(2):231-241.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部