期刊文献+

基于L阵的分布式信源二维波达方向估计算法 被引量:6

Estimation Algorithm of Two-Dimensional Direction of Arrival Based on L-shape Array of Distributed Source
下载PDF
导出
摘要 研究了将相干分布式信源积分形式的方向向量化简为点信源方向向量与实向量的Schur-Hadamard积的方法,提出了一种基于L阵的相干分布式信源二维波达方向分离估计算法.利用阵列结构的特点首先估计仰角,然后构造基于Schur-Hadamard积的二阶统计量估计方位角,所利用的二阶统计量对噪声不敏感,具有较好的信噪比性能.该算法将二维波达方向联合估计简化为两步一维估计,有效降低了计算量.仿真实验验证了所提算法的有效性. To estimate the 2D DOA(direction of arrival) of local scattered signals, a novel algorithm is suggested on the basis of L-shape array of coherently distributed source by way of reducing the steering vectors from coherently distributed source in form of integral to the Schur-Hadamard product of the steering vector from point source and real vector. Then, taking advantage of the array configuration to estimate the elevation angle, the azimuth angle is estimated using the second-order statistics based on Schur-Hadamard product. But the proposed second-order statistics is insensitive to white noise, so the SNR performance is improved. By the new algorithm the 2D-DOF joint operation is reduced to a two-step one-dimensional estimation problem, so as to reduce efficiently the computation. Simulation test shows its validity.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2008年第5期677-680,共4页 Journal of Northeastern University(Natural Science)
基金 教育部高等学校博士学科点专项科研基金资助项目(20050145019)
关键词 相干分布式信源 波达方向 角度扩散 L阵 二阶统计量 coherently distributed source DOA angular spread L-shape array second-order statistics
  • 相关文献

参考文献10

  • 1Asztdy D, Ottersten B. The effects of local scattering on direction of arrival estimation with MUSIC and ESPRIT[C] //Proceedings of ICASSP1998. Washington D C: IEEE, 1998:3333 - 3336.
  • 2Shahbazpanahi S, Valaee S. A new approach to spatial power spectral density estimation for multiple incoherently distributed sources [C]// Proceedings of ICASSP2007. Hawaii: IEEE, 2007:1133 - 1136.
  • 3Christou C T, Jacyna G M. Simulation of the beam response of distributed signals [J ]. IEEE Trans Signal Processing, 2005,53(8) :3023 - 3031.
  • 4Zoubir A, Wang Y, Charge P. Spatially distributed sources localization with a subspace based estimator without eigendecomposition[C ] // Proceedings of ICASSP2007: Hawaii: IEEE, 2007:1085 -1088.
  • 5Hassanien A, Shahbazpanahi S, Gershman A B. A generalized Capon estimator for localization of multiple spread sources[J ]. IEEE Trans Signal Processing, 2004, 52(1):280-283.
  • 6Shahbazpanahi S, Valaee S, Gershman A B. A covariance fitting approach to parametric localization of multiple incoherently distributed sources [ J ]. IEEE Trans Signal Processing, 2004,52(3):592- 600.
  • 7Wan Q, Peng Y N. Low-complexity estimator for four-dimensional parameters under a reparameterised distributed source model[J]. IEE Proc Radar Sonar Navig, 2001,148 (6):313-317.
  • 8Lee J, Song L, Kwon H, et al. Low-complexity estimation of 2D DOA for coherently distributed sources [J]. Signal Processing, 2003,83(8): 1789 - 1802.
  • 9Tayem N, Kwon H M. L-shape 2-dimensional arrival angle estimation with propagator method [ J ]. IEEE Trans Antennas Propagation, 2005,53(5) : 1622-1630.
  • 10Gradshteyn I S, Ryzhik I M. Table of integrals, series, and products(7th Edition) [ M ]. Orlando: Academic Press, 2007:438 - 445.

同被引文献17

引证文献6

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部