期刊文献+

二维光子晶体量子阱的光谱特性研究 被引量:2

Spectral Properties of Two-Dimensional Photonic Crystal Quantum Well Structures
下载PDF
导出
摘要 研究了二维光子晶体量子阱的光谱特性,该量子阱结构由二维正方晶格圆柱晶胞光子晶体通过移去中间位置的介质圆柱层形成。由于光子晶体中的光子禁带充当了光子运动的势垒,类似于半导体量子阱中电子的行为,在光子晶体量子阱结构中会出现量子化的光子能态。文章利用平面波展开法计算了所用光子晶体的能带结构,利用传输矩阵方法计算了量子阱结构的透射光谱。计算结果表明,在光子禁带中出现了离散的透射峰,透射峰的强度随着势垒宽度的增加而减弱,个数随着势阱宽度的增加而增加,通过计算得到了其定量关系,并且讨论了透射峰频率与势阱宽度的关系。 In the present paper, the spectral properties of two-dimensional (2D) photonic crystal quantum well structures were studied'numerically. The structures consist of a 2D photonic crystal (PC) with square lattice of parallel dielectric circular columns in air and some middle layers of columns are removed. Similar to the electrons in semiconductor quantum wells, the pho- tonic bandgap (PBG) in PC can act as a potential barrier to photons, which gives rise to quantized photonic states in the PBG re- gion. Photonic band structures were calculated using plane wave expansion method and transmission spectra were obtained using transfer matrix method. The results show that discrete transmission peaks appear in PBG region. More transmission peaks arise with the increase of the well layer and the strength decreases with the increase in the potential layer width. The relationships between the frequency of transmission peaks and the width of well layer were also discussed.
出处 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2008年第5期988-990,共3页 Spectroscopy and Spectral Analysis
基金 国家“973”基金项目(2003CB314707 北京交通大学优秀博士生科技创新基金项目(48012)资助
关键词 光子晶体 量子阱 平面波展开法 传输矩阵方法 Photonic crystals~ Quantum well~ Plane wave expansion method Transfer matrix method
  • 相关文献

参考文献10

  • 1Yablonovitch E. Phys.Rev. Lett. , 1987, 58(20): 2059.
  • 2John S. Phys. Rev. Lett., 1987, 58(23): 2486.
  • 3周仁龙,彭景翠,李宏建,张高明,翦之渐,夏辉,王健雄,林峰.光子晶体中二能级原子的自发辐射[J].光谱学与光谱分析,2003,23(4):657-661. 被引量:5
  • 4Mendez E E, yon Klitzing K. Physics and Applications of Quantum Wells and Superlattices. New York, Plenum, 1987.
  • 5Jiang Y, Niu C, et al. Phys.Rev. K , 1999, 59: 9981.
  • 6Feng Ch. Sh. , et al. Solid State Communications, 2005, 135: 330.
  • 7Qin Q, Lu H, et al. Appl. Phys. Lett., 2003, 82(26).. 4654.
  • 8Emanuel Istrate, et al. Phys. Rev. K , 2002, 66: 075121.
  • 9Xiaoshuang Chen, et al.Solid State Communications, 2003, 127: 541.
  • 10Guo S, Albin S. Optical Express,2003, 11: 167.

二级参考文献13

  • 1(a) Yablonovitch E. Phys. Rev. Lett., 1987, 58: 2059;
  • 2(b) Yablonovitch E. J. Opt. Soc. Am., 1993, B10: 283.
  • 3John S. Phys. Rev. Lett., 1987, 58: 2486.
  • 4Joannopoulos J D, Meade R D, Winn J N. Photonic Crystals, Princeton: Princeton University Press, N J, 1995.
  • 5Kofman AG, Kurizki G, Shemum B. J. Mod. Opt., 1994, 41. 353.
  • 6Scully M O, Zubairy M S. Quantum Optics, Cambridge: Cambridge University Press, 1997.
  • 7John S, Wang J, Phys. Rev., 1991, B43: 12772.
  • 8John S, Quang T. Phys. Rev., 1994, A50: 1764.
  • 9(a) Lambropoulous B P, Molmer K. Phys. Lett., 1997, 79: 2654;
  • 10(b) Lambropoubous B P, Molmer K. Opt. Commum., 1998, 146:130.

共引文献4

同被引文献12

  • 1KurtBusch, SajeevJohn. Phys. Rev. Lett., 1999, 83(5): 967.
  • 2Ryotaro Ozaki, Yuko Matsuhisa, Masanori Ozaki, et al. Appl. Phys. Lett. , 2004, 84(11):1844.
  • 3Ch. Schuller, Klopf F, Reithmaier J P, et al. Appl. Phys. Lett. , 2003, 82(17): 2767.
  • 4Brett Maune, Marko Lonear, Jeremy Witzens, et al. Appl. Phys. Lett. , 2004, 85(3).- 360.
  • 5Fink Y, Winn J N , Fan S, et al. Science, 1998, 282(5394): 1679.
  • 6Remenyuk A D, Astrova E V, Vitman R F, et al. Proc. of SPIE, 2005, 5825: 400.
  • 7Tolmachev V, Tatiana Perova, Ekaterina Astrova, et al. Proc. of SPIE, 2005, 5825: 85.
  • 8Ryotaro Ozaki, Yuko Matsuhisa, Hiroyuki Yoshida, et al. J. Appl. Phys., 2006, 100(2): 023102.
  • 9Lei Xinya, Li Hua, Ding Feng. Appl. Phys. Lett. , 1997, 71(20): 2889.
  • 10邢名欣,郑婉华,周文君,陈微,刘安金,王海玲.Slow Light Effect and Multimode Lasing in a Photonic Crystal Waveguide Microlaser[J].Chinese Physics Letters,2010,27(2):123-126. 被引量:1

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部