期刊文献+

基于K-L变换的小波图像融合方法 被引量:1

A Wavelet Transform Image Fusion Method Based on Karhunen-Loeve Transform
下载PDF
导出
摘要 在多源信息融合中,小波多分辨率分析是一种最常用的方法。这里提出在小波多分辨率分析下,利用K-L变换的融合方法。首先利用小波变换对序列图像进行多分辨率分解,对相应的小波系数矩阵进行K-L变换,计算出小波系数权重,按照所得的权重融合小波系数,最后将小波融合系数逆变换实现图像的融合处理。实验结果证实这种方法有效的利用了图像的相关性,主观视觉效果分析和客观统计参数评价分析都表明,新方法的性能优于直接对小波系数进行平均的融合方法。 Wavelet multi- resolution analysis is an important method in image fusion. An image fusion method of wavelet multi-resolution based on Karhunen - Loeve transform is presented. Image sequences are decomposed using wavelet transform, fusion weight value for the coefficients of wavelet are resolved using K - L transform, and the coef- ficients of wavelet are fused by the fusion weight value, then images are fused by inverse transform of fusion wavelet coefficients. The experimental results show the method has made good use of the relativity of image sequences, and it' s better than direct fusing the coefficients of wavelet.
出处 《计算机仿真》 CSCD 2008年第5期202-204,共3页 Computer Simulation
关键词 图像融合 小波变换 卡胡南一列夫变换 Image fusion Wavelet transform Karhunen - Loeve transform
  • 相关文献

参考文献7

  • 1D L Hall and J Llinas. Anintroduction to multisensor data fusion [ C ]. Porceedings of The IEEE, 1997,85 ( 1 ).
  • 2吴秀清,周蓉,席育孝.采用小波变换的图像数据融合方法及实现[J].小型微型计算机系统,2000,21(8):833-835. 被引量:13
  • 3Stephane Mallat著,杨力华,戴道清,黄文良译.信号处理的小波导引[M].北京:机械工业出版社,2002.
  • 4Kenneth RCasiltman.数字图像处理[M].北京:电子工业出版社,2002..
  • 5Tianpeng Wang, Chris C Shaw, Ching- Chung Li. Pixdwise Fusion for Optimizing SNR in Multiple - plate Computed Radiography Imaging, [ J]. IEEE Transactions on Medical Imaging, 1999, 18 (3).
  • 6J Nunez, et al. Multiresolution - based image fusion with additive wavelet decomposition. [ J]. IEEE Transactions on Geoscience & Remote Sensing, 1999,37.
  • 7侯波,迟耀斌,朱重光,赵忠明.一种基于小波变换去除遥感图像噪声的方法[J].遥感学报,2003,7(5):379-385. 被引量:43

二级参考文献11

  • 1KennthRCastleman.数字图像处理[M].北京:电子工业出版社,1998..
  • 2Donoho D L. Nonlinear Wavelet Methods for Recovery of Signals,Densities, and Spectra from Indirect and Noisy Dat, Prec. of Symposia in Applied Mathematics, vol 47,1993.
  • 3Donoho D L. Adapdng to Unknown Smoothness via Wavelet Shrinkage [J]. J. Amer. Stat. Assoc. 1995.
  • 4DeVore R A, J Lucier B. Fast Wavelet Techniques for Near-Optimal Image Processing [A]. Proc IEEE Mil. Commun. CONF., IEEE Communications Society[C]. 1992.
  • 5Sanker B. et al. Multiresolution Biological Transient Extraction Applied to Respiratory Crackles [J]. Comput. Boil. Med. 1996.26(1) :25-39.
  • 6J Weaver. Filtering noise from images with wavelet transform [J].Magnetic Resonance in Medicine, 21,288-295,1995.
  • 7Hummel R. Reconstruction from Zero-crossings in Scale Space [J].IEEE Trans, 1989. ASSP-37(12).
  • 8Coinfman R R, Donoho D L. Ideal Translation Invariant Denoiaing[ C]. Springer Verlag, 1995.
  • 9Donoho D L. Wavelet Analysis [J]. IEEE Spectram, 1996,33(10).
  • 10徐佩霞,小波分析与应用实例,1996年

共引文献98

同被引文献7

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部