期刊文献+

基于支持向量机的航空发动机振动预测模型研究 被引量:7

Aeroengine Vibration Forecasting based on Support Vector Machine
下载PDF
导出
摘要 提出了一种基于支持向量机的航空发动机振动参数预测方法。分析了支持向量机用于时间序列预测的基本理论,对时间序列进行了相空间重构,采用互信息法计算了延迟时间,运用平均一步绝对误差选取了嵌入维数,在此基础上建立了基于支持向量机的时间序列一步预测模型。应用某发动机飞参记录数据对发动机振动参数进行预测,预测精度比RBF神经网络更高,研究结果验证了应用支持向量机模型进行发动机参数预测的正确性和可行性。 A aeroengine vibration forecasting method based on support vector machines is presented in this paper. Basic theory analysis of support vector regression in time series is introduced in detail and the reconstruction of the phase-space is presented, the delay time is obtained based on the method of mutual information and the average single-step absolute error is calculated to select embedding dimension, and then the single-step forecasting model of time series is established by using support vector machines. The support vector machines forecasting model is used to forecast aeroengine vibration by applying flight data, to compare with the result of RBF neural network, the proposed method has better forecasting precision, the research result shows the accuracy and feasibility of aeroengine vibration forecasting by applying support vector machines.
出处 《微计算机信息》 北大核心 2008年第16期289-291,共3页 Control & Automation
关键词 支持向量机 相空间重构 振动预测 嵌入维数 support vector machine state space reconstruction vibration forecasting embedding dimension
  • 相关文献

参考文献6

二级参考文献19

  • 1赵宏伟,任震,黄雯莹.考虑周周期性的短期负荷预测[J].中国电机工程学报,1997,17(3):211-213. 被引量:20
  • 2Lai Y C,Phys D,1998年,115期,1页
  • 3Hagan M T,Behr S M.The time series approach to short termload forecasting.IEEE Trans. on Power System,1987,2(3):25~30.
  • 4Bakirtzis A G,Theocharis J B,et al. Short term load forecasting using fuzzy neural networks. IEEE Trans. on Power System,1995,10(3):1518~1524.
  • 5Liang Z S. The short term load forecast of power system based on adaptive neural network. Journal of Northeast China Institute of Electric Power Engineering,1994,14(1):27~35.
  • 6Rahman S, Bhatnagar R. An expert system based algorithm for short term load forecast. IEEE Trans on Power Systems,1988,3(2):392~399.
  • 7Liangyue C, Alistair M, Kevin J. Dynamics from multivariate time series. Physica D,1998,121:75~88.
  • 8Porporato A,Ridolfi L. Multivariate nonlinear prediction of river flows. Journal of Hydrology,2001(248):109~122.
  • 9Hongming Y,Xianzhong D. Chaotic characteristics of electricity price and its forecasting model. IEEE CCECE 2003,Montreal, 2003:659~662.
  • 10付凡 张宗麟.故障诊断的神经网络与专家系统方法[J].西北大学学报:自然科学版,2003,146:94-94.

共引文献103

同被引文献63

引证文献7

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部