期刊文献+

基于聚类的海战场目标分群方法 被引量:7

Method of clustering about sea battlefield force aggregation
下载PDF
导出
摘要 目标分群是态势估计需要解决的一个重要问题。目标分群的结果有助于确定态势元素间的关系,从而为作战决策提供依据。提出了一种海战场环境下目标分群的方法。该方法在考虑目标各运动要素的基础上,对其进行最优权值分配,然后利用Chameleon算法对综合指标值进行聚类。 The sea target clustering is one of the important issues which situation assessment need to resolve. The output of sea target clustering is helpful to determine the relationship among situation elements, thus supporting command decision. This paper proposes a method of clustering about sea battlefield force aggregation. The method introduce the motorial attributes of the sea target, and the weights of the attributes are gained through optimizing the value of attribution of each sea target, and then uses Chameleon algorithm to cluster the weight of attribution.
出处 《微计算机信息》 北大核心 2008年第15期42-43,123,共3页 Control & Automation
基金 总装备部武器装备预先研究基金项目(编号不公开)
关键词 海战场 分群 CHAMELEON算法 Sea battlefield clustering Chameleon algorithms
  • 相关文献

参考文献9

二级参考文献20

  • 1蔡庆宇 等.相控阵雷达数据处理及其仿真技术[M].北京:国防工业出版社,1997..
  • 2Han J, Kamber M. Data mining concepts and techniques [ M ]. San Fransisco, CA: Morgan Kaufmann Publishers,2001.
  • 3MacQueen J. Some methods for classification and analysis of multivariate observations [ C]. Proc 5th Berkeley Syrup. Math. Statist, Prob, Califomia, United States, 1967.
  • 4Guha S, Rastogi R, Shim K. CURE:An efficient clustering algorithm for large databases [C]. Proc of 1998 ACM-SIGMOD Int Conf on Management of Data, Seattle, Washington, 1998.
  • 5Karypis G, Han E H, Kurnar V. CHAMELEON: A hierarchical clustering algorithm using dynamic modeling[J ]. COMPUTER, 1999,32: 68-75.
  • 6Ester M, Kriegel H P, Sander J, Xu X. A density-based algorithm for discovering clusters in large spatial databases [C]. Prcc 1996 Int Conf Knowledge Discovery and Data Mining (KDD' 96), Portland,OR, 1996.
  • 7Hinneburg A, Keim D A. An efficient approach to clustering in large multimedia databases with noise [C]. Proc 1998 int Cord Knowledge Discovery and Data Mining (KDD' 98), New York, 1998.
  • 8Jarvis R A, Patrick E A. Clustering using a similarity method based on shared nearest neghbours [J]. JEEE Transactions in Computers, 1973,22:1025-1034.
  • 9Hand D J. Discrimination and classification [M]. New York:John Wiley & Sons, Ltd,1981.
  • 10Friedman J H, Bentley J L, Finkel R A, An algorithm for finding best matches in logarithmic expected time [ J ],ACM Transactions on Mathematical Software, 1977,3:209-226.

共引文献28

同被引文献47

引证文献7

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部