期刊文献+

由点云数据生成三角网格曲面的区域增长算法 被引量:11

A Region-growing Algorithm for Triangular Mesh Surface Reconstruction from Point-cloud Data
下载PDF
导出
摘要 提出一种新的由点云数据生成三角网格曲面的区域增长算法.该算法充分利用点云内在的几何与拓扑信息,使用一组检测过滤规则,对曲面进行快速网格重构.算法包括两部分:首先对点云做预处理完成数据精简,其次使用一组检测规则,从种子三角形出发,针对每个活动边,在点云中选择匹配点与其构成新的三角形,并通过不断更新边界,使剖分区域不断增长.所使用的检测规则,可以针对活动边与预选择匹配点之间的不同位置关系采用不同的阈值,从而避免了重叠与自交三角形的生成,防止产生错误拓扑,确保了重构三角网格曲面的质量.同时针对区域增长算法中的前沿分裂问题,在数据结构中采用反向重合边,使剖分过程始终保持一个前沿边界.实验结果表明,该算法具有运算速度快、结果准确性好、适用范围广等优点. A new region-growing algorithm is presented for triangular mesh surface reconstruction from pointcloud data. The algorithm makes the full use of geometric and topological information inherent in the pointcloud data and adopts a series of examining rules to reconstruct triangular mesh surface rapidly. The algorithm consists of two steps: Firstly, an initial data thinning is performed to reduce the data set size. Secondly, the process of the region-growing is started from an initial to form a satisfied triangle for each active edge in the triangle and is followed by choosing an appropriate point boundary of advancing front. The triangulated region is growing repeatedly by updating boundary repeatedly. According to the relative position between the active edge and the candidate points, in presented examining rules, different thresholds are used. This avoids generating overlapping facets, self-intersection and wrong topology. The examining rules ensure the quality of reconstructed triangular mesh surface. In accordance with the problem of the advancing front broken, the overlapping edge of the opposite direction is used. This ensures to have only one boundary of advancing front throughout.Experimental results show that the algorithm has many advantages, such as high efficiency, accuracy and generality.
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2008年第3期413-417,共5页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:60673021)
关键词 点云数据 三角网格曲面 区域增长算法 point-cloud data triangular mesh surface region-growing algorithm
  • 相关文献

参考文献13

  • 1Schroeder W, Shephard M. A Combined Octree/Delaunay Method for Fully Automatic 3D Mesh Generation with Multiple Level Octant Differences [ J]. International Journal for Numerial Methods in Engineering, 1990, 29: 37-55.
  • 2Shephard M S, Georges M K. Automatic Three-dimensional Mesh Generation by the Finite Octree Technique [ J ]. Journal of Numerial Methods in Engineering, 1991, 32(4) : 709-749.
  • 3Tchon K F, Mohammed K, Francois G, et al. Constructing Anisotropic Geometric Metrics Using Octrees and Skeletons [C]//Proceedings of the 12th International Meshing Roundtable. New Mexico: Sandia National Laboratories, 2003: 293 -304.
  • 4Sun W, Bradley C, Zhang Y F, et al. Cloud Data Modelling Employing a Unified, Non-redundant Triangular Mesh [ J ]. Computer-aided Design, 2001, 33(2) : 183-193.
  • 5Borouchaki H, Lo S H. Fast Delaunay Triangulation in Three Dimensions [ J]. Computer Metheds in Applied Mechanics and Engineering, 1995, 128(1/2): 153-167.
  • 6Shewchuk J R. Tetrahedral Mesh Generation by Delaunay Refinement [ C ]//Proceedings of the 14th ACM Symposium on Computational Geometry. New York : ACM, 1998 : 86-95.
  • 7KUO Chuan-chu, YAU Hong-tzong. A Delaunay-based Region-growing Approach to Surface Reconstruction from Unorganized Points [ J ]. Computer-aided Design, 2005, 37 (8) : 825-835.
  • 8Lohner R. Progress in Grid Generation via the Advancing Front Technique [ J]. Engineering with Computers, 1996, 12:186-210.
  • 9Rassineux A. Generation and Optimization of Tetrahedral Meshes by Advancing Front Technique [ J ]. International Journal for Numerical Methods in Engineering, 1998, 41 (4) : 651-674.
  • 10Freedman D. An Incremental Algorithm for Reconstruction of Surfaces of Arbitrary Codimension [ J ]. Computational Geometry: Theory and Applications, 2007, 36(2): 106-116.

同被引文献105

引证文献11

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部