摘要
利用对偶神经网络解决了基于线性等式、不等式和有界约束的二次规划问题,表明所研究的对偶神经网络具有整体指数收敛性,与包含高次非线性条件的神经网络相比,所提出的网络使用了更少的神经元,并且网络的体系结构更简单.数值实验结果表明了该方法的有效性.
This paper presents a dual neural network which is globally exponential convergence for solving quadratic programming problems based on linear equation, in-equation and bounded constraint. Compared with other neural network models which contained high-order nonlinear condition, the dual neural network uses less neuron and has simpler structure. Finally, numerical tests show the validity of the model.
出处
《吉林大学学报(理学版)》
CAS
CSCD
北大核心
2008年第3期448-452,共5页
Journal of Jilin University:Science Edition
基金
国家自然科学基金(批准号:10471055)
关键词
神经网络
二次规划问题
指数收敛
neural network
quadratic programming problems
exponential convergence