期刊文献+

一类Cahn-Hilliard方程弱解的存在惟一性 被引量:1

Existence and Uniqueness of Weak Solutions for a Class of Cahn-Hilliard Equations
下载PDF
导出
摘要 讨论一类具有非定常系数迁移率的Cahn-Hilliard方程.针对迁移率为m(x,t)的情形,通过引入Nirenberg不等式给出了解的有界性先验估计,并应用Leray-Schauder不动点定理证明了此类Cahn-Hilliard方程弱解的存在惟一性. A class of the Cahn-Hilliard equations with nonconstant mobility was studied. With the aid of Nirenberg' s inequality, some priori estimates are presented in the case of the mobility is m (x, t). Then the existence and uniqueness of the weak solutions are given by means of Leray-Schauder fixed point theorem.
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2008年第3期453-456,共4页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:J0630104)
关键词 Cahn—Hilliard方程 Nirenberg不等式 Leray—Schauder不动点定理 Cahn-Hilliard equation Nirenberg inequality Leray-Schauder fixed point theorem
  • 相关文献

参考文献1

二级参考文献23

  • 1Novick-Cohen, A., Segel, L. A.: Nonlinear aspects of the Cahn--Hilliard equation. Physica D, 10, 277-298(1984)
  • 2Cohen, D. S., Murrey, J. D.: A generalized diffusion model for growth and dispersal in a population. J.Math. Biology, 12, 237-249 (1981)
  • 3Pego, R. L.: Front migration in the nonlinear Cahn-Hilliard equation. Proc. R. Soc. Lond., A, 422,261-278 (1989)
  • 4Taylor, A. B.: Mathematical Models in Applied Mechanics, Clarendon, Oxford, 1986
  • 5Zheng, S. M.: Mathematical results on the coupled Cahn-Hilliard equations, Proceedings of the Conference on Nonlinear Evolution Equations and Infinite-dimensional Dynamical Systems (Shanghai, 1995), 259-265,World Sci. Publishing, River Edge, N J, 1997
  • 6Elliott, C. M., Zheng. S. M.: Onthe Cahn-Hilliard equation. Arch. Rat. Mech. Anal., 96, 339-357 (1986)
  • 7Novick-Cohen, A.: On Cahn-Hilliard type equations. Nonlinear Analysis. TMA, 15, 797-814 (1990)
  • 8Chen, X.: Global asymptotic limit of solutions of the Cahn-Hilliard equation. J. Differential Geom., 44,262-311 (1996)
  • 9Alikakos, N. D., Bates, P. W., Chen, X. F.: Asymptotics of tile Cahn-Hilliard flow, Curvature flows and related topics (Levico, 1994), 13-23, GAKUTO Internat. Ser. Math. Sci. Appl., 1, Gakkotosho, Tokyo,1995
  • 10Bernis, F., Friedman, A.: Higher order nonlinear degenerate parabolic equations. Journal of Differential Equations, 83, 179-206 (1990)

共引文献2

同被引文献6

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部