期刊文献+

2k阶非线性时滞微分方程的周期解 被引量:2

Periodic Solutions for(2k)th-Order Nonlinear Delay Differential Equations
下载PDF
导出
摘要 应用Schauder不动点定理和傅氏分析技术,推广了二阶时滞微分方程周期解的结果,证明了2k阶非线性时滞微分方程在L2(0,2π)空间中2π周期解的存在性与惟一性.保证结果成立的条件是通常Lazer型非共振条件的自然推广. Applying Schauder fixed-point theorem and Fourier' s method, we generalized the results on the existence and uniqueness of the periodic solutions for a class of second order delay differential equations, and gave the existence and uniqueness of 2π-periodic solutions for (2k)th-order nonlinear delay differential equations on space L^2 (0,2π). The condition to ensure the theorems is a variety of usual Lazer type one.
作者 梁心 张伸煦
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2008年第3期466-468,共3页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:10571179)
关键词 2k阶时滞微分方程 周期解 SCHAUDER不动点定理 (2k) th-order delay differential equation periodic solution Schauder fixed-point theorem
  • 相关文献

参考文献7

  • 1Iannacci R, Nkashama M N. On Periodic Solutions of Forced Second Order Differential Equations with Deviating Arguments [ C ]//Lecture Notes in Mathematical. Berlin: Springer-Verlag, 1984 : 224-232.
  • 2William L. Periodic Solutions of Nonlinear Delay Equations [ J]. Journal of Mathematical Analysis and Applications, 1980, 77(1) : 198-204.
  • 3CONG Fu-zhong. Periodic Solutions for 2kth-Order Ordinary Differential Equations with Nonresonance [ J]. Nonlinear Anal, 1998, 32(6) : 787-793.
  • 4CONG Fu-zhong, HUANG Qing-dao, SHI Shao-yun. Existence and Uniqueness of Periodic Solutions for (2n + 1 ) th-Order Differential Equations [ J]. Journal of Mathematical Analysis and Applications, 2000, 241 ( 1 ) : 1-9.
  • 5Lazer A C. Application of a Lemma on Bilinear Forms to a Problem in Nonlinear Oscillations [ J]. Proceedings of the American Mathematical Society, 1972, 33( 1 ) : 89-94.
  • 6李勇,王怀中.高阶Duffing方程的周期解[J].高校应用数学学报(A辑),1991,6(3):407-412. 被引量:8
  • 7Krasnosel's kii M A. Topological Methods in the Theory of Nonlinear Integral Equations [ M ]. New York: Macmillan Co, 1964: 20-26.

二级参考文献3

  • 1葛渭高,数学年刊.A,1988年,9卷,4期,499页
  • 2丁同仁,南京大学学报.数学,1987年,1页
  • 3Deng Shitao,Acta Math Sin New Ser,1985年,1卷,4期,319页

共引文献7

同被引文献22

  • 1李勇,周钦德,吕显瑞.Periodic Solutions for Functional Differential Inclusions With Infinite Delay[J].Science China Mathematics,1994,37(11):1289-1301. 被引量:1
  • 2方锦清.非线性系统中混沌的控制与同步及其应用前景(一)[J].物理学进展,1996,16(1):1-74. 被引量:137
  • 3GUEMEZ J, MAT1AS M A. Control of chaos in unidimensional maps [J]. Phys Lett, 1993, A182 : 29-32.
  • 4MATIAS M A, GUEMEZ J. Stabilization of chaos by proportional pulses in the system variables [J]. Phys Rev Lett, 1994,72: 1445-1458.
  • 5GUEMZ J, GUTIERREZ J M, IGLESIAS A, et al. Suppression of chaos through changes in the system variables transient chaos andcrises[J]. Phys Lett, 1994, A190 : 429-433.
  • 6GUEMZ J,GUTIERREZ J M, IGLESIAS A, et al. Stabilization of periodic and quasiperiodic motion in chaotic systems through changes in the system variables [J]. Physica, 1994, D79:164-173.
  • 7FANG JINQING. Synchronization and control of hyperchaos [J]. Chinese Science Bulletin, 1995,72:306-310.
  • 8NGUYEN PHORY CHAU. Controlling continuous chaotic dynamics by periodic proportional pulses [J]. Phys Rev, 1998, E 57: 378-360.
  • 9KAPITANIAK T. Transition to hyperehaos in chaotically forced coupled oscillators [J]. Phys Rev, 1993 ,E47:2975-2978.
  • 10WILLEBOORDSE F H, KANEKO K. Bifurcations and spatial chaos in an open flow model [J]. Phys Rev Lett, 1994,73: 533-536.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部