期刊文献+

一种改进R-Link的空间数据检索算法 被引量:1

An Improved R-Link Spatial Data Index Algorithm
下载PDF
导出
摘要 提出一种基于R-Link树的快速空间索引结构,并在该结构中引入K-Means算法.在K-Means算法中采用均值标准差确定初始聚类中心,提高了收敛速度,并通过距离准则函数优化K值,避免了K值的盲目选取.与R-Link相比空间开销代价稍大,但性能更高,且数据量越多,此结构的整体性能越好. This paper presents a quick speed spatial indexing introduced K-Means algorithm into the structure. In K-Means structure which is based on R-link tree. And we algorithm, we adopted value-standard deviation to ascertain the initial clustering centres to improve convergence speed and we ascertained ultimate K value by distance criterion function to make K value most suitable. The structure sometimes consumes more storage than R-Link but gains better performance. The more the data quantity, the better the overall performance of the structure.
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2008年第3期499-503,共5页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:60573182) 教育部博士点基金(批准号:20060183042) 吉林省科技发展计划项目基金(批准号:20060527 20040531)
关键词 空间数据库 R-Link树 四叉树 空间聚类 空间索引 spatial database R-Link tree quad-tree spatial clustering spatial index
  • 相关文献

参考文献5

  • 1陈述彭 鲁学军 等.地理信息系统导论[M].北京:科学出版社,2001..
  • 2Jung Y C, Hee Y Y, Kim U. Efficient Indexing of Moving Objects Using Time-based Partitioning with R-Tree [ J ]. Lecture Notes in Computer Science, 2005, 35 (15) : 568-575.
  • 3David M, Nathan S. An Efficient K-Means Clustering Algorithm: Analysis and Implementation [ J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2002, 24( 11 ) : 881-892.
  • 4周水庚,周傲英,曹晶,胡运发.一种基于密度的快速聚类算法[J].计算机研究与发展,2000,37(11):1287-1292. 被引量:89
  • 5倪巍伟,陆介平,孙志挥.基于向量内积不等式的分布式k均值聚类算法[J].计算机研究与发展,2005,42(9):1493-1497. 被引量:15

二级参考文献14

  • 1Zhang W,Proc 23rd VL DB Conf,1997年,186页
  • 2Chen M S,IEEE Trans Knowledge Data Engineering,1996年,8卷,6期,866页
  • 3Zhang T,Proc ACM SIGMOD Int Conf on Management of Data,1996年,73页
  • 4Ng R T,Proc 20th VLDB Conf,1994年,144页
  • 5Han Jiawei, Micheline. Data Mining: Concepts and Techniques.San Francisco: Morgan Kaufmann Publishers, 2000.
  • 6M. Ester, HP. Kriegel, J. Sander, et al. A density based algorithm of discovering clusters in large spatial databases with noise. In: E. Simoudis, Han Jiawei, U. M. Fayyad, eds. Proc.the 2nd Int'l Conf. Knowledge Discovery and Data Mining Portland. Menlo Park, CA: AAAI Press, 1996. 226~231.
  • 7Tian Zhang, Raghu Ramakrishnan, Miron Livny. BIRCH: An efficient data clustering method for very large databases. In: Proc.ACM SIGMOD Int'l Conf. Management of Data. New York:ACM Press, 1996. 73~84.
  • 8S. Guha, R. Rostogi, K. Shim. CURE: An efficient clustering algorithm for large databases. In: L. M. Haas, A. Tiwary, eds.Proc. the ACM SIGMOD Int'l Conf. Management of Data Seattle. New York: ACM Press, 1998. 73~84.
  • 9W. Zhnn, et al. Muntz. STING: A statistical information grid approach to spatial data mining. In: Proc. 23rd VLDB Conf.,San Francisco: Morgan Kaufrnann, 1997. 186~195.
  • 10S. Kantabutra, A. L. Couch. Parallel k-means clustering algorithm on Nows. NECTEC Technical Journal, 1999, 1 ( 1 ) :243~ 247.

共引文献181

同被引文献8

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部