期刊文献+

幂律拟合的进展及其在产业网络中的应用 被引量:11

Power-Law Fitting Problems and Application to Several Industrial Networks
下载PDF
导出
摘要 用极大似然估计和KS统计量拟合幂律分布α指数和xmin值的研究,是复杂网络中幂律分布拟合的新进展。运用上述方法对广州软件产业、佛山陶瓷产业和中国家电产业竞争关系网络以及百度百科词条生产网络的分布进行研究,并与用最小二乘方法的估计进行比较,得出了一些新结论。 Aaron Clauset et al. used the Maximum Likelihood Estimate Method and Kolmogorov-Smirnov Statistics to fit the Power-Law distributions' aand XminValues, which is the latest development in complex network fields. On the basis of the method, several degree distributions of networks, including GuangZhou software industry, FoShan Ceramics industry, Chinese household appliances industry and Baidu Cyclopedia lemmas industry, were studied. The results were compared with the previous ones, Some conclusions are obtained.
出处 《管理学报》 CSSCI 2008年第3期371-375,406,共6页 Chinese Journal of Management
基金 国家自然科学基金资助项目(70773041)
关键词 幂律分布 极大似然估计 最小二乘法 复杂网络 度分布 power-law distribution OLS MLE complex networks degree distribution
  • 相关文献

参考文献15

  • 1[1]CLAUSET A,SHALIZI C R,NEWMAN M E J.Power-Law Distributions in Empirical Data[EB/OL].[2007-06-07].http://arxiv.org/abs/0706.1062.
  • 2[2]BARABA'SI A L,ALBERT R,JEONG H,Mean-Field Theory for Scale-Free Random Networks[J].Physica A,1999,320(1):173~187.
  • 3[3]BARABA'SI A L,ALBERT R.Emergence of Scaling in Random Networks[J].Science,1999,286:509~512.
  • 4[4]DOROGOVTSEV S N,MENDES J F F,SAM-UKHIN A N.Structure of Growing Networks With Preferential Linking[J].Physical Review Letters,2000,85(21):4 633~4 636.
  • 5[5]LIU Z A,LAI Y C,YE N.Connectivity Distribution and Attack Tolerance of General Networks With Both Preferential and Random Attachments[J].Physics Letters A,2002,303(1):337~344.
  • 6[6]LI X,CHEN G.A Local World Evolving Network Model[J].Physica A,2003,324(1):274~286.
  • 7张培培,何阅,周涛,苏蓓蓓,常慧,周月平,汪秉宏,何大韧.一个描述合作网络顶点度分布的模型[J].物理学报,2006,55(1):60-67. 被引量:39
  • 8[8]LAHERRE`RE J,SORNETTE D.Stretched Exponential Distributions in Nature and Economy:"Fat Tails" with Characteristic Scales[J].European Physical Journal B,1998,35(2):525~539.
  • 9[9]PICOLI S,MENDES R S,MALACARNE L C.q-Exponential,Weibull,and q-Weibull Distributions:An Empirical Analysis[J].Physica A,2003,324(3/4):678~688.
  • 10[10]SHALIZI C R.Maximum Likelihood Estimation for q-Exponential (Tsallis) Distributions[EB/OL].[2007-02-01].http://arxiv.org/abs/math/0701854 v2.

二级参考文献17

  • 1Albert R,Barabasi A L 2002 Reviews of Modern Physics 74 47
  • 2Newman M E J 2003 SIAM Review 45 (2) 167
  • 3Krapivsky P L,Redner S 2003 Statistical Mechanics of Complex networks,ed P-Satorras R,Rubi M and D-Guilera A (Berlin Heidelberg:Springer-Verlag) p4
  • 4Barabasi A L,Albert R 1999 Scicnce 286 509
  • 5Liu Z,Lai Y C,Ye N et al 2002 Phys.Lett.A 303 337
  • 6Newman M E J 2001 Phys.Rev.E 64 016132
  • 7Li X,Chen G 2003 Physica A 328 274
  • 8Laherrere J,Sornette D 1998 Eur.Phys.J.B 2 525
  • 9....何大韧,张培培,许田,何阅..全国复杂网络会议文集..杭州,,2004/08..p103..
  • 10Sun A,Zhang P,He Y,Su B,He D R 2004 Bulletin of APS 49 (1) 1006

共引文献38

同被引文献161

引证文献11

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部