期刊文献+

弹性损伤理论的几何-拓扑描述 被引量:3

GEOMETRICAL TOPOLOGY OF ELASTIC DAMAGE THEORY
下载PDF
导出
摘要 材料内部微观几何缺陷通常是作为物理非线性问题在本构方程中考虑。针对连续介质弹性损伤理论作几何拓扑,采用非完整标架方法把材料内部微观几何缺陷转化为材料空间的弯曲,并体现在基本几何法则中。首先由连续损伤变量定义拟塑性张量,给出这些基本张量所满足的连续性方程和基本几何法则。由此建立了弹性损伤缺陷与Riemann流形的对应关系,将物理非线性问题转化为物理线性和材料所在空间的弯曲之和。最后讨论了二维情况下,各向同性晶格材料受各向异性损伤的算例。 The microscopic geometrical defects of materials are usually taken into account in the constitutive equation as a physical nonlinear problem. In this paper, the geometrical topology of elastic damage theory is given and the microscopic geometrical defects of materials are translated into the bending of the space, which is reflected in the geometrical equations. At first, this paper defines some quasi-plastic tensors with continuous damage tensor, which satisfy the continuity equations and the geometric laws. As a result, the corresponding relation between elastic damage defects and Riemann Space is established, and the physical nonlinear problem is converted to a physical linear problem together with a bending of space. Finally, an example of anisotropic damage of isotropic materials in two-dimensions is discussed.
作者 王云 郝际平
出处 《工程力学》 EI CSCD 北大核心 2008年第5期60-66,共7页 Engineering Mechanics
基金 国家自然科学基金项目(50378078)
关键词 弹性损伤 物理非线性 几何拓扑 微分几何 非完整标架 拟塑性应变张量 Riemann空间 变形非协调 elastic damage physical nonlinear geometrical topology differential geometry non-completeness system quasi-plastic strain tensor Riemann Space incompatible deformation
  • 相关文献

参考文献19

  • 1Kondo K.On the geometrical and physical foundations of the theory of yielding[R].Proc.2nd Japan National Congress of Applied Mechanics,1952:41-47.
  • 2Bilby B A.Continuous distribution of dislocation[J].Progress in Solid Mechanics,1960,1:331.
  • 3Bilby B A,Smith E.The relation between dislocation density and stress[J].Acta Metallurgica,1958,6(1):29-33.
  • 4Eshelby J D.Elastic inclusions and inhomogene-ities[J].Journal of the Mechanics and Physics of Solid,1961,9(1):67.
  • 5Eshelby J D.The continuum theory of lattice defects[J].Solid State Physics,1965,3:79.
  • 6Kondo K.RAAG Memoirs of the unifying study of the basic problem in engineering and physical science by means of geometry[C].Tokyo:Gakujutsu Bunken Fukyu-kai,Volume Ⅰ(1955),Volume Ⅱ(1958),Volume Ⅲ(1962),Volume Ⅳ(1968).
  • 7Kroner E.Differential geometry of defects in condensed systems of particle with only translational mobility[J].International Journal of Engineering Science,1981,19(12):1507-1515.
  • 8Kroner E.Incompatibility,defects,and stress functions in the mechanics of generalized continua[J].International Journal of Solids and Structure,1985,21(7):747-756.
  • 9Kroner E.The internal mechanical state of solids with defects[J].International Journal of Solids and Structure,1992,29(14):1849-1857.
  • 10Roland De Wit.A view of the relation between the continuum theory of lattice defects and non-Euclidean geometry in the linear approximation[J].International Journal of Engineering Science,1981,19(12):1475-1506.

二级参考文献3

共引文献22

同被引文献42

  • 1马海平,李雪,林升东.生物地理学优化算法的迁移率模型分析[J].东南大学学报(自然科学版),2009,39(S1):16-21. 被引量:46
  • 2王步宇.结构损伤的遗传神经网络检测方法[J].噪声与振动控制,2005,25(4):11-13. 被引量:2
  • 3张明,李仲奎,苏霞.准脆性材料弹性损伤分析中的概率体元建模[J].岩石力学与工程学报,2005,24(23):4282-4288. 被引量:29
  • 4盛骤,谢式千,潘承毅.概率论与数理统计[M],北京:高等教育出版社,2005.
  • 5袁颖,周爱红.结构损伤识别理论及其应用[M].北京:中国大地出版社,2008.
  • 6SCHREIBER T. Measuring information transfer [J]. Physical Review Letters, 2000, 85(2): 461-464.
  • 7KAISER A, SCHREIBER T. Information transfer in continuous processes[J]. Physica D, 2002, 166(1/2): 43 -62.
  • 8MARSCHINSKI R, KANTZ H. Analysing the information ow between nancial time series: an improved estimator for transfer entropy [J]. European Physical Journal B, 2002, 30(2) : 275 - 281.
  • 9NICHOLS J M, SEAVER M, TRICKEY S T. A method for detecting damage-induced nonlinearities in structures using information theory [J]. Journal of Sound and Vibration, 2006, 297(1/2) : 1 - 16.
  • 10OVERBEY L A, TODD M D. Dynamic system change detection using a modification of the transfer entropy [J]. Journal of Sound and Vibration, 2009, 322 (1/2) : 438 - 453.

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部