期刊文献+

3D力热耦合磨齿模型与数值分析 被引量:19

3D Models of Thermo-mechanical Coupling of Grinding Tooth and Numerical Analysis
下载PDF
导出
摘要 根据螺旋锥齿轮的数控磨齿原理,得出磨齿基本参数的理论模型和物理意义上的磨削力计算公式;应用单磨粒热模型计算了磨齿热量分配比,采用矩形分布热源得出磨齿热流量。以热弹塑性变形理论为基础,采用PRANDTL-REUSS方法建立磨齿界面应力应变场本构关系:齿轮材料采用双线性等向强化模型,用3D力热耦合有限元单齿模型和小步距载荷移动方法,实例进行瞬态温度场的仿真。结果表明,磨削瞬态最高温度位于磨削弧中心,其他各点的瞬态温度,随磨削条件、空间和时间等影响因素的不同,呈现相应的变化规律。试验与力热耦合仿真的数值比较分析表明,构造的3D力热耦合磨齿模型有较高的精度,能为螺旋锥齿轮磨齿质量的控制提供依据。 According to the principle of NC grinding tooth of spiral bevel gear, the theoretic models of basic grinding tooth parameters and the calculation formula of grinding forces in the physical sense are gotten. The heat distribution ratio is computed by using the thermal model of a single grinding grit, and the heat flux is obtained by applying rectangle heat source. Based on the thermo-elastic-plastic deformation theory, the constitutive relationship of stress-strain field on grinding tooth interface by applying PRANDTL-REUSS method is set up. According to the bilinear isotropic hardening model of gear material, the transient temperature field of a single tooth is simulated by using the 3D finite element model of thermo-mechanical coupling, and the method of small sub-step moving of loads. Many conclusions of the simulation are gotten. Firstly, the place of the highest transient temperature of grinding is located at the center of grinding arc. Secondly, while changing of the conditions, space, time of grinding, and so on, the transient temperature of other points has its corresponding changing rule. By the numerical analysis of comparing test data with simulation ones of thermo-mechanical coupling, the results show that the thermo-mechanical coupling model has relatively high precision. These conclusion provide a foundation for the control of grinding quality of sprial bevel gear.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2008年第5期17-24,共8页 Journal of Mechanical Engineering
基金 国家重点基础研究发展计划(973计划,2005CB724104)资助项目.
关键词 力热耦合 磨齿 3D模型 数值分析 Thermo-mechanical coupling Grinding tooth 3D model Numerical analysis
  • 相关文献

参考文献11

  • 1PAPADOPOULOS E G,CHASPARIS G C.Analysis and model-based control of servomechanisms with friction[J].Trans.Of ASME,Journal of Dynamic systems,Measurement & Control,2004,126:911-915.
  • 2胡韦华,王秋成,胡晓冬,刘云峰.切削加工过程数值模拟的研究进展[J].南京航空航天大学学报,2005,37(B11):194-198. 被引量:12
  • 3兰雄侯,王继先,高航.磨削温度理论研究的现状与进展[J].金刚石与磨料磨具工程,2001,21(3):5-6. 被引量:14
  • 4PANTALé O,BACARIA J L,DALVERNY O,et al.2D and 3D numerical models of metal cutting with damage effects[J].Computer Methods in Applied Mechanics and Engineering,2004,193(4):4 383-4 399.
  • 5STRENKOWSKI J S,SHIH A J,LIN J C.An analytical finite element model for predicting three-dimensional tool forces and chip flow[J].International Journal of Machine Tools & Manufacture,2002,42:723-731.
  • 6HAMDI H,ZAHOUANI H,BERGHEAU J M.Residual stresses computation in a grinding process[J].Journal of Materials Processing Technology,2004,147:277-285.
  • 7黄志刚,柯映林,王立涛.金属切削加工的热力耦合模型及有限元模拟研究[J].航空学报,2004,25(3):317-320. 被引量:50
  • 8Malkin S,蔡光起,巩亚东,宋贵亮,译.磨削技术理论与应用[M].沈阳:东北大学出版社,2002.18-65.
  • 9GUO C,WU Y,VARGHESE V,et al.Temperatures and energy partition for grinding with vitrified CBN wheels[J].Annals of the CIRP,1999,48(1):247.
  • 10JIN T,CAI G Q.Analytical thermal models of oblique moving heat source for deep grinding and cutting[J].Journal of Manufacturing Science and Engineering,2001,123(5):185-190.

二级参考文献32

  • 1贝季瑶.中华医院感染学杂志[J].上海交通大学学报,1964,9(3).
  • 2金滩.高效深切磨削技术的基础研究.东北大学博士论文[M].,1999,12..
  • 3徐鸿钧.磨削温度的测量技术[J].磨料磨具与磨削,1986,6(36).
  • 4史金飞.基于磨屑流热辐射信号的磨削工况在线监测研究.东南大学博士论文[M].,1998,6..
  • 5Usui E, Shirakashi T. Mechanics of machining-from descriptive to predictive theory, on the art of cutting metals-75 years later[A]. ASME-PED 7[C], 1982. 13-15.
  • 6Komvopoulos K, Erpenbeck S A. Finite element modeling of orthogonal cutting[J]. ASME J Eng Ind, 1991, 113 (3): 253-267.
  • 7Zhang B, Bagchi A. Finite element simulation of chip formation and comparison with machining experiment[J]. ASME J Eng Ind, 1994, 116(3): 289-297.
  • 8Shih A J. Finite element simulation of orthogonal metal cutting[J]. ASME J Eng Ind, 1995, 117(1): 84-93.
  • 9Iwata K, Osakada A, Terasaka Y. Process modeling of orthogonal cutting by rigid-plastic finite element method[J]. J Eng Mater Technol, 1984, 106(1): 132-138.
  • 10Carroll J T, Strenkowski J S. Finite element models of orthogonal cutting with application to single point diamond turning[J]. Int J Mech Sci, 1988, 30(11): 899-920.

共引文献79

同被引文献162

引证文献19

二级引证文献100

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部