期刊文献+

Clifford连分式的值域与元素域(英文) 被引量:1

Value regions and element regions of Clifford continued fractions
下载PDF
导出
摘要 首先将复连分式的值域与元素域的概念推广到了Clifford连分式,得到了Clifford连分式值域与元素域的两条性质;其次构造出了一对满足条件的值域与元素域序列,并由所构造出来的值域与元素域的一个特殊形式,将复连分式的区域套定理推广到了Clifford连分式的更一般的情形;最后由Clifford连分式值域与元素域的性质和所构造出的一对满足条件的值域与元素域序列,得到了收敛的Clifford连分式。 Firstly, the concepts of value regions and element regions of complex continued fractions are generalized to the case of Clifford continued fractions, and thereby two properties of Clifford continued fractions are obtained. Secondly, a pair of the sequences of value regions and element regions are con- structed, and the nested region theorem in Clifford continued fractions is established by using the special case of the constructed sequences. In the end, some convergent Clifford continued fractions are obtained by using the obtained properties and the constructed sequences about the Clifford continued fractions.
作者 李永群 陈静
出处 《黑龙江大学自然科学学报》 CAS 北大核心 2008年第2期178-182,共5页 Journal of Natural Science of Heilongjiang University
基金 Supported by the Natural Science Foundation of China (10771059) the Natural Science Foundation of Hunan Province(05JJ10001) Program for the New Century Excellent Talents in University (04 -0783)
关键词 Clifford连分式 CLIFFORD矩阵 值域 元素域 Clifford continued fraction Clifford matrix value region element region
  • 相关文献

参考文献10

  • 1Jones W B, Thron W J. Continued Fractions : Analytic theory and applications, Encyclopedia of mathematics and its applications[ M ]. Indianapolis, Indiana:Addison - Wesley, 1980.
  • 2Lorentzen L, Waadeland H. Continued fractions with applications, Studies in computational mathematics 3 [ M ]. Toronto, Canada: North - Holland, 1992.
  • 3Beardon A F. The geometry of Pringsheim' s continued fractions [ J ]. Geom Dedicata, 2001, 84 : 125 - 134.
  • 4Beardon A F, Lorentzen L. Approximants of Sleszynski -Pringsheim continued fractions[ J]. J Comput Appl Math, 2001,132:467 -477.
  • 5Beardon A F. Continued frations, discrete groups and complex dynamics[J]. Computational Methods and Function Theory, 2001, 1 (2) :535 -594.
  • 6Beardon A F. Continued frations, Mobius transformations and Clifford algebras[ J]. Bull London Math Soc, 2003,35:302 -308.
  • 7Beardon A F. Hillam -Thron theorem in higher dimensions[ J]. Geom Dedicata, 2003,96:205 -209.
  • 8Wang X, Yang W. Discreteness criteria of Mobius groups of high dimensions and convergence theorem of Kleinian groups [ J ]. Adv in Math, 2001, 159:68 -82.
  • 9Waterman P. Mobius transformations in several dimensions[ J]. Adv in Math, 1993,101:87 - 113.
  • 10Ahlfors L V. Mobius transformations and Clifford numbers, Differential geometry and complex analysis, Ranch H E Memorial Volume[ M ]. New York: Springer-Verlag, 1985.

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部