期刊文献+

幂图的邻点可区别全色数 被引量:3

Adjacent vertex distinguishing total chromatic number of power graph
下载PDF
导出
摘要 在一个简单图的基础上,连接任两个最短路长为k的两个顶点,得到原图的k幂。根据幂图的结构性质,利用穷染,递推,换色的方法,对树的k幂和圈的2幂的进行邻点可区别全染色,并得到了邻点可区别全色数。特别的,在存在两个相邻最大度点时,按k的3剩余类进行分类,在k≠3a,a为偶数的情况下,树的k幂的邻点可区别全色数为6. Based on a simple graph, if every couple of nodes which the minimal path length between them is k are connected,a k power graph is obtained. According to the properties of power graphs, using coloring one by one, recursion, changing colors, the k power graph of trees and the 2 power graph of cycles are colored by the adjacent vertex distinguishing total coloring, and the adjacent vertex distinguishing total chromatic number is determined. Especially, when the graph has two neighbor maximal degree nodes, and the power graphs of paths are classified by k/3. The k(k≠3a, a is even) power graphs of trees' adjacent vertex distinguishing total chromatic number is 6.
出处 《黑龙江大学自然科学学报》 CAS 北大核心 2008年第2期193-195,共3页 Journal of Natural Science of Heilongjiang University
基金 国家自然科学基金资助项目(60503002)
关键词 邻点可区别全染色 邻点可区别全色数 adjacent vertex distinguishing total coloring adjacent vertex distinguishing total chromatic number power graph path cycle
  • 相关文献

参考文献6

二级参考文献39

  • 1张忠辅,陈祥恩,李敬文,姚兵,吕新忠,王建方.关于图的邻点可区别全染色[J].中国科学(A辑),2004,34(5):574-583. 被引量:192
  • 2陈祥恩,张忠辅.P_m∨P_n的邻点可区别全染色[J].西北师范大学学报(自然科学版),2005,41(1):13-15. 被引量:27
  • 3张忠辅,王建方,王维凡,王流星.若干平面图的完备色数[J].中国科学(A辑),1993,23(4):363-368. 被引量:16
  • 4张忠辅,李敬文,陈祥恩,程辉,姚兵.图的距离不大于β的任意两点可区别的边染色[J].数学学报(中文版),2006,49(3):703-708. 被引量:96
  • 5Zhang Zhongfu, Liu Linzhong ,Wang Jianfang. Adjacent Strong Edge Coloring of Graphs [J]. Applied Mathematics Letter,2002, (5):623-626.
  • 6Bondy J A, Murty U S R. Graph Theory with Applications[M]. The Macmillan Press Lid, 1976.
  • 7Harary F. Graph Theory[M]. Addison-Wesley, Reading, Mass, 1969.
  • 8Burris A C,Schelp R H.Vertex-distinguishing proper edge-colorings.J of Graph Theory,1997,26(2): 73-82
  • 9Bazgan C,Harkat-Benhamdine A,Li H,et al.On the vertex-distinguishing proper edge-coloring of graphs.J Combin Theory,Ser B,1999,75: 288-301
  • 10Balister P N,Bollobas B,Schelp R H.Vertex distinguishing colorings of graphs with △(G)=2.Discrete Mathematics,2002,252(2): 17-29

共引文献251

同被引文献23

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部