摘要
研究一类在非线性光学中提出的Schrdinger方程的Cauchy问题iut+Δu+|u|p-1u=0;u(x,0)=u0(x),x∈Rn,t≥0的整体解存在性问题,由于此时问题已不再具有正定能量,通过利用Galerkin结合位势井的方法证明了在满足条件1<p<∞,n=1,2;1<p≤(n+2)/(n-2),n≥3,u0(x)∈H1(Rn),0<E(0)<d,I(u)>0或‖u0‖=0时,问题存在整体解u(x,t):u∈W,0≤t<∞且u∈L∞(0,∞;H1(Rn)),ut∈L∞(0,∞;L2(Rn)).结论中扩大了文献[3]中对p的取值范围,从实质上改进和推广了文献[3]的结果。
The existence of the global solutions of Cauchy problem for a class of Schrodinger equations is studied.The class of Schrodinger equations is raised from the nonlinear optics and can be described as iut+△u+|u|p-1u=0;u(x,0)=uo(x),x∈R^n,t≥0.By using potential wells combined with the Galerkin method, it is shown that ifp-satisfies 1〈P〈∞,n=1,2;1〈P≤n+2/n-2,n≥3,uo(x)∈H^1(R^n),0〈E(0)〈d,I(u)〉0and||uo||=0,then the problem has the global solutions u( x, t ):u∈W,0≤t〈∞andu∈L^∞(0,∞;H^1(R^n)),u1∈L^∞(0,∞;L^2(R^n)).The result extended the range ofpin [ 3 ], and generalizes and improves in essential those results in [3 ].
出处
《黑龙江大学自然科学学报》
CAS
北大核心
2008年第2期253-255,259,共4页
Journal of Natural Science of Heilongjiang University