期刊文献+

一类Schrdinger方程的Cauchy问题的整体解 被引量:2

The global solutions of Cauchy problem for a class of Schrdinger equations
下载PDF
导出
摘要 研究一类在非线性光学中提出的Schrdinger方程的Cauchy问题iut+Δu+|u|p-1u=0;u(x,0)=u0(x),x∈Rn,t≥0的整体解存在性问题,由于此时问题已不再具有正定能量,通过利用Galerkin结合位势井的方法证明了在满足条件1<p<∞,n=1,2;1<p≤(n+2)/(n-2),n≥3,u0(x)∈H1(Rn),0<E(0)<d,I(u)>0或‖u0‖=0时,问题存在整体解u(x,t):u∈W,0≤t<∞且u∈L∞(0,∞;H1(Rn)),ut∈L∞(0,∞;L2(Rn)).结论中扩大了文献[3]中对p的取值范围,从实质上改进和推广了文献[3]的结果。 The existence of the global solutions of Cauchy problem for a class of Schrodinger equations is studied.The class of Schrodinger equations is raised from the nonlinear optics and can be described as iut+△u+|u|p-1u=0;u(x,0)=uo(x),x∈R^n,t≥0.By using potential wells combined with the Galerkin method, it is shown that ifp-satisfies 1〈P〈∞,n=1,2;1〈P≤n+2/n-2,n≥3,uo(x)∈H^1(R^n),0〈E(0)〈d,I(u)〉0and||uo||=0,then the problem has the global solutions u( x, t ):u∈W,0≤t〈∞andu∈L^∞(0,∞;H^1(R^n)),u1∈L^∞(0,∞;L^2(R^n)).The result extended the range ofpin [ 3 ], and generalizes and improves in essential those results in [3 ].
作者 宋玉坤 陈阳
出处 《黑龙江大学自然科学学报》 CAS 北大核心 2008年第2期253-255,259,共4页 Journal of Natural Science of Heilongjiang University
关键词 SCHRODINGER方程 位势井 CAUCHY问题 整体解 Schrodinger equations potential wells Cauchy problem global solutions
  • 相关文献

参考文献6

二级参考文献4

  • 1[1]Lange H. On Nonlinear Schrodinger Equations in the Theory of Quantum Mechanical Dissipative Systems. Nonlinear Analysis TMA, 1985, 9(10): 1115-1133
  • 2[2]Yosida K. Functional Analysis. Berlin, Heidelberg: Springer-Verlag, 1980
  • 3郭柏灵,应用数学学报,1987年,10卷,2期,189页
  • 4郭柏灵,Proc D D I/Symposium,1980年

共引文献2

同被引文献15

  • 1刘亚成,刘萍.关于位势井及其对强阻尼非线性波动方程的应用[J].应用数学学报,2004,27(4):710-722. 被引量:18
  • 2叶耀军.一类非线性Schrodinger方程的整体小解[J].应用数学学报,2006,29(1):91-96. 被引量:2
  • 3Glassy R T. On the Blowing up of Solutions to the Cauchy Problem for Nonlinear Schr6dinger Equations [J] J Math Phys, 1977, 18(9) : 1794-1797.
  • 4Takayoshi Ogawa, Yoshio Tsutsumi. Blow up of Ha Solutions for the One-Dimensional Nonlinear SehrOdinger Equations with Critical Power Nonlinearity[J]. Proe Amer Math Soc, 199I, 111(2): 487-496.
  • 5Takayoshi Ogawa, Yoshio Tsutsumi. Blow up of Solutions for the Nonlinear Schr6dinger Equation with Quartic Potential and Periodic Boundary Condition [C]//Functional Analytic Methods for Partial Differential Equations Lecture Notes in Mathematics. Vol. 1450. ES. 1.1: Springer, 1990: 236-251.
  • 6ZHANG Jian, LI Xiao-guang, WU Yong-hong. Remarks on the Blow-up Rate for Critical Nonlinear Schr6dinger Equation with Harmonic Potentia[J]. Applied Mathematics and Computation, 2009, 208(2): 389-396.
  • 7Ginibre J, Velo G. On a Class of Nonlinear Schr0dinger Equations. I The Cauchy Problem, General Case [J]. J Funct Anal, 1979, 32(1).. 1 32.
  • 8Lange H. On Nonlinear Schr6dinger Equations in the Theory of Quantum Mechanical Dissipative Systems [J]. Nonlinear Analysis, 1985, 9(10) : 1115-1133.
  • 9SHU Ji, ZHANG Jian. Nonlinear Schr0dinger Equation with Harmonic Potential[J]. Journal of Mathematical Physics, 2006, 47(6): 063503.
  • 10Ozawa T. Finite Energy Solutions for the Schrodinger Equations with Quadratic Nonlinearity in One Space Dimension [J]. Funkcialaj Ekvacioj, 1998, 41(3): 451 468.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部