期刊文献+

In-N共掺杂ZnO第一性原理计算 被引量:36

First principles study of In-N codoped ZnO
原文传递
导出
摘要 采用基于密度泛函理论(DFT)的第一性原理平面波超软赝势方法计算了纤锌矿ZnO,N掺杂和In-N共掺杂ZnO晶体的电子结构,分析了N掺杂和In-N共掺杂ZnO晶体的能带结构、电子态密度、差分电荷分布以及H原子对In-N共掺杂ZnO的影响.计算结果表明:N掺杂ZnO在能隙中引入了深受主能级,载流子(空穴)局域于价带顶附近.而加入激活施主In的In-N共掺杂ZnO,受主能级向低能方向移动,形成了浅受主能级.同时,受主能级带变宽、非局域化特征明显、提高了掺杂浓度和系统的稳定性.文章的结论与实验结果相符,从而为实验上,In的掺入有助于实现ZnO的p型掺杂提供了理论支持.文中还指出H原子的存在会大大降低掺杂效率,对p型掺杂产生不利影响,应该在反应中尽量避免. The electronic structure of pure N-doped and In-N codoped wurtzite ZnO has been calculated by using first-principles ultra- soft pseudo-potential approach of the plane wave based upon the density functional theory, and the structure change, bandstructure,density of states, difference charge density and the influence of ln-N codoped wurtzite ZnO by H atom were studied. The calculation results revealed that N-doped wurtzite ZnO caused formation of deep N acceptor levels in the band gap and the carriers (hole) were localized near the top of the valence band. But the codoping calculation revealed that the acceptor level shifted toward the lower-energy region and shallow acceptor level were fomed, which was broadened and showed delocalizing characters, owing to which the concentration of impurities and the stability of the system were enhanced. Our conclusions accord with the results of experiments, which confirms the fact that In-N codoping in wurtzite ZnO helps the formation of p-type ZnO. In addition, it was also pointed out that the presence of H atom reduces the efficiency of doping markelly, which should be avoided as much as possible.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2008年第5期3138-3147,共10页 Acta Physica Sinica
基金 国家自然科学基金(批准号:50602018) 广东省自然科学基金(批准号:06025083) 广东省科技攻关计划(批准号:2006A10802001) 广州市科技攻关重大项目(批准号:2005Z1-D0071)资助的课题~~
关键词 密度泛函理论(DFT) 第一性原理 N掺杂ZnO In-N共掺杂ZnO density functional theory, first-principles, N-doped wurtzite ZnO, In-N codoped wurtzite ZnO
  • 相关文献

参考文献39

二级参考文献131

  • 1张东平,齐红基,邵建达,范瑞瑛,范正修.离子束溅射法薄膜生长中结瘤微缺陷的生长机理[J].物理学报,2005,54(3):1385-1389. 被引量:3
  • 2Vispute R D,Talyansky V,Trajanovic Z et al 1997 Appl.Phys.Lett.70 2735
  • 3Sernelius B E,Berggren K F,Jin Z C et al 1988 Phys.Rev.B 3710244
  • 4Major S,Banerjee A,Chopra K L 1984 Thin Solid Films 108 31
  • 5Kim Kwang Joo,Park Young Ran 2001 Appl.Phys.Lett.78 475
  • 6Olvera M de la L,Maldonado A,Asomoza R et al 1993 Thin Solid Films 229 196
  • 7Ma Tae Young,Shim Dae Keun 2002 Thin Solid Films 410 8
  • 8Tokumoto M S,Smith A,Santilli C V et al 2002 Thin Solid Films 416 284
  • 9Segawa Y,Ohtomo A,Kawasaki M et al 1997 Phys.Stat.Sol.B202 669
  • 10Natsume Y,Sakata H,Hirayama T,Yanagida H 1992 J.Appl.Phys.72 4203

共引文献97

同被引文献314

引证文献36

二级引证文献144

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部