期刊文献+

基于贝叶斯分割和灰预测的人运动跟踪 被引量:3

Human body motion tracking based on Bayesian segmentation and grey prediction
下载PDF
导出
摘要 在人运动的视觉分析中,根据差分图像的直方图分布,将目标区域和背景区域作为2个类别进行判别,提出基于最小错误率的贝叶斯决策的动态图像分割方法,获得了良好的分割效果。提出了基于改进的灰预测模型GM(1,1)的人运动跟踪方法,GM(1,1)的初始信息由c均值聚类结果提供,同时GM(1,1)的预测结果作为下一帧图像c均值的初始聚类中心,提高了系统的实时性。与α-β-γ滤波的跟踪误差对比实验证明:该方法能够更好地挖掘人的当前运动规律,能够稳定地保持较小的跟踪误差,从而更好地反映人运动趋势,快速准确地预测人的运动位置。 In the vision analysis of human body motion, taking object region and background region as two different judging categories according to histogram distribution of difference image, this paper puts forward a dynamic image segmentation method based on Bayesian decision with minimal error ratio, which obtains fine segmentation effects. A human body motion tracking method is proposed, which is based on modified grey prediction model GM ( 1,1 ) whose initial information is provided by the results from c-mean clustering. Moreover, the prediction result of model GM ( 1, 1 ) is taken as the initial clustering center for the next frame to improve the real time performance of the system. Experiments on tracking error indicate that compared with α-β-γ filter, this method can explore current law of human body motion better and maintain smaller tracking error stably, and therefore, better reflect the trend of human body motion so as to predict the position of human body motion quickly and correctly.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2008年第5期1016-1019,共4页 Chinese Journal of Scientific Instrument
基金 浙江省科技厅项目(2007C31045) 浙江省教育厅科研计划(20060598)资助项目
关键词 人运动跟踪 贝叶斯决策 灰预测 GM(1 1)模型 human body motion tracking bayesian decision grey prediction GM ( 1,1 ) model
  • 相关文献

参考文献2

二级参考文献16

  • 1Blimes, J. A. A Gentle Tutorial of the EM Algorithm and its Application to Parameter Estimation for Gaussian Mixture and Hidden Markov Models. Technical Report TR-97-021, International Computer Science Institute (ICSI) and Computer Science Division, Dept.
  • 2Neal R. M., Hinton G. E.. A View of the EM Algorithm that Justifies Incremental, Sparse, and Other Variants. To appear in M. I. Jordan (editor), Learning in Graphical Models, Kluwer Academic Press, 1998, pp: 355-368.
  • 3C. Ridder, O. Munkelt, and H. Kirchner. Adaptive Background Estimation and Foreground Detection Using Kalman-filtering. In Proc. International Conference on Recent Advances in Mechatronics, pp: 193-199, 1995.
  • 4C.Wren, A. Azarbayejani, T.Darrell, and A. Pentland. Pfinder: Real-time Tracking of the Human Body. IEEE Transactions on PAMI, 19(7), pp: 780-785, 1997.
  • 5Stauffer C and Grimson W. Adaptive Background Mixture Models for Real-time Tracking. In: Proc IEEE Conference on Computer Vision and Pattern Recognition, Fort Collins, Colorado, 1999, 2, pp: 246-252.
  • 6Magee, D. Tracking Multiple Vehicles Using Foreground, Background and Motion Models. In Proc. ECCV Workshop on Statistical Methods in Video Processing, pp: 7-12, 2002, Copenhagen.
  • 7FUJIYOSHI H,LIPTON A.Real-time human motion analysis by image skeletonization[C].Proc IEEE Worksho Pon Applications of Computer Vision,Princeton,USA,1998:15-21.
  • 8WREN C,AZARBAYEJANI A,DARREL T,et al.Pfinder:Real-time tracking of the human body[J].IEEE Trans.on PAMI,1997,19(7):780-785.
  • 9GUO Y,XU G,TSUJI S.Understanding human motion patterns[C].Proc International Confererce on Pattern Recognition,Jerusalem,Israel,1994:325-329.
  • 10GAVRILA D M.The visual analysis of human movement:a survey[J].Computer Vision and Image Understanding,1999,73 (1):82-98.

共引文献7

同被引文献28

  • 1梁瑞鑫,张长水,郭国营,柴爱红.一种混沌贝叶斯优化算法[J].计算机工程与应用,2004,40(36):95-97. 被引量:3
  • 2姚金涛,林亚平,孔宇彦,陈治平,童调生.基于决策图贝叶斯的多目标QoS组播路由算法[J].系统仿真学报,2005,17(2):457-460. 被引量:3
  • 3钟小平,李为吉,赵艳.改进的贝叶斯优化算法及应用[J].机械科学与技术,2006,25(4):497-500. 被引量:3
  • 4陆琳,谭清美.最大熵分布算法及其应用[J].系统工程与电子技术,2007,29(5):820-822. 被引量:5
  • 5武燕,王宇平,刘小雄.基于变异的Bayesian优化算法[J].计算机工程,2007,33(16):153-155. 被引量:1
  • 6BOSCH A,MUNOZ X,MARTI R. Which is the best way to organize/classify images by content[J].Image and Vision Computing,2007,(06):778-791.
  • 7RADSTAKE N,LUCAS P,VELIKOVA M. Critiquing knowledge representation in medical image interpretation using structure learning[J].Knowledge Representation for Health-Care,2011.56-69.
  • 8KOLLER D,FRIEDMAN N. Probabilistic graphical models:principles and techniques[M].Cambridge,MA:The MIT Press,2009.
  • 9BARRAT S,TABBONE S. Classification and automatic annotation extension of images using Bayesian network[J].Structural Syntactic and Statistical Pattern Recognition,2010.937-946.
  • 10SHARIAT S,RABIEE H R,KHANSARI M. Inferring a Bayesian network for content-based image classification[A].2009.211-218.

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部