期刊文献+

污泥与煤混烧中飞灰对汞的吸附特性 被引量:12

Adsorption Characterization of Mercury by Fly Ashes During Co-combustion of Sludge and Coal
下载PDF
导出
摘要 为了解飞灰对汞的吸附特性,用氮气吸附等温线分析了4个飞灰样品的比表面积和孔隙分布;应用基于(Frenkel—Halsey—Hill,FHH)模型的方法计算了它们的分形维数,分析了飞灰样品的化学组分对汞吸附的影响。结果表明,飞灰残碳量与汞含量呈正相关关系。飞灰颗粒比表面积增大,飞灰的汞吸附趋于增加。孔分布越宽越有利于汞的吸附,其中微孔在汞吸附过程中发挥更为重要的作用。飞灰样品的分形维数处于2.1-2.6之间,且分形维数能较好地反映飞灰对汞的物理吸附性能。烟气成分与飞灰化学组成可能对汞存在一定的催化氧化作用。 In order to understand the performance of fly ashes on mercury adsorption, the surface area and pore distribution of four fly ash samples was studied by using the nitrogen adsorption isotherms. Their fractal dimensions were also calculated by a method based on Frenkel-Halsey-Hill (FHH) model. Chemical compositions of fly ash samples were also determined. The results indicate that there is a positive correlation between unburned carbon content and mercury content in fly ash samples. The bigger the specific surface area of fly ash particles and thus the more mercury adsorbed. Wider pore distribution is beneficial to mercury adsorption and micropores play a more significant role in mercury adsorption. The fractal dimensions of fly ash samples are between 2.1 and 2.6, and they can reflect the characterization of the physical adsorbility of fly ashes. The components of flue gas and chemical compositions of fly ash may have some catalytic oxidation effect on mercury adsorption.
出处 《中国电机工程学报》 EI CSCD 北大核心 2008年第14期55-60,共6页 Proceedings of the CSEE
基金 国家重点基础研究发展计划项目(973项目)(2006CB-200300)~~
关键词 混烧 飞灰 汞吸附 孔隙结构 分形维数 灰组分 催化氧化 co-combustion fly ash mercury adsorption pore structure fractal dimension ash composition catalytic oxidation
  • 相关文献

参考文献21

  • 1Werther J, Ogada T. Sewage sludge combustion[J]. Progress in Energy and Combustion Science, 1999, 25(1): 55-116.
  • 2Ghorishi S B, Snger C F, Sedman C B. Preparation and evaluation of modified lime and silica-lime sorbents for mercury vapor emission control [C]. EPRI-DOE-EPA Combined Utility Air Pollution Control Symposium, Atlanta Georgia, USA, 1999.
  • 3Stouffer M R, Rosenhover W A, Burke F P. Investigation of flue gas mercury measurement and control for coal-fired sources [C]. The 89th Annual Air & Waste Management association Meeting, Nashville, USA, 1996.
  • 4郭欣,郑楚光,吕乃霞.簇模型CaO(001)面上吸附汞与氯化汞的密度泛函理论研究[J].中国电机工程学报,2005,25(13):101-104. 被引量:25
  • 5Butz J, Albiston J. Use of fly ash fractions from western coals for mercury removal from flue gas streams[C]. Proceedings of the Air Quality Ⅱ: Mercury, Trace elements, and Particulate Matter Conference, McLean, USA, 2000.
  • 6RubelA, Andrews R, Gonzalez R, etal. Adsorption of Hgand NOx on coal by-products[J], Fuel, 2005, 84(8): 911-966.
  • 7朱珍锦,薛来,谈仪,张长鲁,李永光,章德龙,王启杰,潘丽华,柯建新.负荷改变对煤粉锅炉燃烧产物中汞的分布特征影响研究[J].中国电机工程学报,2001,21(7):87-90. 被引量:27
  • 8Yan R, Liang D T, Tsen L, et al. Bench-scale experimental evaluation of carbon performance on mercury vapour adsorption [J]. Fuel, 2004, 83(17): 2401-2409.
  • 9Skodras G, Diamantopoulou I, Zabaniotou A, et al. Enhanced mercury adsorption in activated carbons from biomass materials and waste tires[J]. Fuel Processing Technology, 2007, 88(8): 749-758.
  • 10Li Y L, Lee C W, Gullett B K. Importance of activated carbon's oxygen surface functional groups on elemental mercury adsorption [J]. Fuel, 2003, 82(4): 451-457.

二级参考文献35

  • 1王夔.生命科学中的微量元素[M].北京:中国计量出版社,1991..
  • 2范从振.锅炉原理[M].南京:东南大学出版社,1985,2..
  • 3[1]Anthony C. Mercury from Combustion Sources: A Review of the Chemical Species Emitted and Their Transport in the Atmosphere. Water, Air and Soil Pollution, 1997, 98: 241~254
  • 4[2]Hall B, Schager P, Lindqvist O. Chemical Reactions of Mercury in Combustion Flue Gases. Water, Air and Soil Pollution, 1991,56: 3~14
  • 5[3]Prestbo E M, Bloom N S. Mercury Speciation Adsorption(MESA) Method for Combustion Flue Gas: Methodology, Artifacts, Intercomparison, and Atmospheric Implications. Water, Air and Soil Pollution, 1995, 80: 145~158
  • 6Thomas D, Dennis N, Richard A, et al. Mercury Measurement and Its Control: What We Know, Have Learned, and Need to Further Investigate[J]. Journal of the air & waste management association, 1999,49(6) :23--30.
  • 7U. S. EPA. Research and Development, Control of Mercury Emissions from Coal-fired Electricity Boilers: Interim Report IncludingErrata Dated 3-21-02, EPA-600/R-01-109[R].U.S. Government Printing Office: Washington D C, April 2002.5,3--6.
  • 8U. S. EPA, Standard test method for mercury from coal-fired stationary sources (Ontario Hydro Method) [ R ].U. S. Government Printing Office: Washington D C, July 7, 1999:1--20.
  • 9Sliger R, Kramlich J, et al. Towards the development of a chemical kinetic model for the homogeneous oxidation of mercury by chlorine species[J]. Fuel Processing Teohnology, 2000, 65-66(1): 423--424.
  • 10Ghorishi S B , Lee C W, Kilgroe J D. Mercury speciation in combustion systems: studies with simulated flue gases and model fly ashes[A]. The 92nd Annual Meeting of Air & Waste Management Association[C]. Louis June, 1999:20-24.

共引文献85

同被引文献193

引证文献12

二级引证文献102

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部