摘要
It is shown that a Gaussian light beam transmitting through a planar thin dielectric slab in the air undergoes four different effects, i.e. lateral Goos-Hanchen-like (GHL) displacement, angular deflection, width modification and longitudinal focal shift as compared with the results predicted by geometrical optics. According to the Taylor expansion of the exponent of transmission coefficient when expressed as an exponential form, the lateral GHL displacement and the angular deflection are the first-order effects and can be negative or positive. The width modification and the longitudinal focal shift are the second-order effects and can also be positive or negative. Owing to the waist-width dependent term, the non-geometrical effects of transmitted beam are not identical with the non-specular effects of reflected beam. The conditions for the validity of those effects are suggested and numerical simulations are also given.
It is shown that a Gaussian light beam transmitting through a planar thin dielectric slab in the air undergoes four different effects, i.e. lateral Goos-Hanchen-like (GHL) displacement, angular deflection, width modification and longitudinal focal shift as compared with the results predicted by geometrical optics. According to the Taylor expansion of the exponent of transmission coefficient when expressed as an exponential form, the lateral GHL displacement and the angular deflection are the first-order effects and can be negative or positive. The width modification and the longitudinal focal shift are the second-order effects and can also be positive or negative. Owing to the waist-width dependent term, the non-geometrical effects of transmitted beam are not identical with the non-specular effects of reflected beam. The conditions for the validity of those effects are suggested and numerical simulations are also given.
基金
supported by the National Natural Science Foundation of China (Grant No 60377025)
Science and Technology Commission of Shanghai Municipal of China (Grant No 04JC14036)
Shanghai Education Development Foundation of China (Grant No 2007CG52)
the Shanghai Leading Academic Discipline Program of China (Grant No T0104)