期刊文献+

丝素蛋白/纳米羟磷灰石支架的实验研究 被引量:5

Preparation and characteristics of non-woven silk fibroin/nano-hydroxyapatite scaffolds
下载PDF
导出
摘要 目的设计和构建三维丝素蛋白/羟磷灰石骨组织工程支架材料。方法联合运用丝素蛋白非编织方法和仿生矿化技术,制备并表征三维多孔丝素蛋白/纳米羟磷灰石的有机/无机组织工程支架。结果仿生矿化在非编织支架上形成的针状羟磷灰石晶体,直径20~60nm,长100~300nm。复合支架孔隙度为70%~78%,孔径为(163.4±42.6)μm。结论采用非编织丝素蛋白和仿生矿化的方法可制备孔隙度和孔径可控的组织工程支架。 Objective The aim of the present study was to design and fabricate a three dimensional (3D) porous structure of silk fibroin/apatite used as a potential scaffold in bone tissue engineering. Methods With the combining use of non-woven silk fibroin net and biomimetic method, porous non-woven silk fibroin/nano-hydroxyapatite net (NSF/nHAP) was prepared and characterized with X-ray diffraction (XRD), scanning electron microscope (SEM) and fourier transform infrared spectroscopy(FTIR). The porosity and swelling ratio of the 3D scaffold were also measured. Besides, the osteoblasts from the cranium of new born SD rat were cultured on the pro-fabricated scaffold to evaluate the biological reaction of the scaffold. Results The nano-sized hydroxyapatite crystals were needle-like with the length of 100-300 nm and the diameter of 20-60 nm. The scaffold fabricated in the present study exhibited the porous microstructure with open porosity around 70%-78%. Its average pore size was about (163.4±42.6) μm. The swelling ratio and water uptaking were 4.56% and 81.93%, respectively, which revealed that the 3D porous scaffold had an excellent hydrophilicity. The rod-shaped apatite crystals could rapidly form on the surface of fibroin fibers throughout the network by immersing the net into calcium and phosphate solutions alternatively. Conclusion A 3D porous NSF/nHAP scaffold can be fabricated by biomlmetic mineralization and none-woven silk fibroin method. The novel NSF/nHAP scaffold has an excellent cytocompatibility for the growth of osteoblasts. Porous NSF/nHAP scaffold may be a hopeful biomaterial used in bone tissue engineering.
出处 《华西口腔医学杂志》 CAS CSCD 北大核心 2008年第2期211-214,共4页 West China Journal of Stomatology
基金 国家“863”计划资助项目(2002AA326080)
关键词 丝素蛋白 仿生矿化 羟磷灰石 fibroin biomineralization hydroxyapatite
  • 相关文献

参考文献11

  • 1Altman GH, Diaz F, Jakuba C, et al. Silk-based biomaterials[J]. Biomaterials, 2003, 24(3):401-416.
  • 2Nazarov R, Jin HJ, Kaplan DL. Porous 3-D scaffolds from regenerated silk fibroin[J]. Biomacromolecules, 2004, 5 (3):718- 726.
  • 3Takeuchi A, Ohtsuki C, Miyazaki T, et al. Deposition of bonelike apatite on silk fiber in a solution that mimics extracellular fluid[J]. J Biomed Mater Res A, 2003, 65(2):283-289.
  • 4Wang Y, Kim HJ, Vunjak-Novakovic G, et al. Stem cell-based tissue engineering with silk biomaterials[J]. Biomaterials, 2006, 27 (36) : 6064-6082.
  • 5Furuzono T, Taguchi T, Kishida A, et al. Preparation and characterization of apatite deposited on silk fabric using an alternate soaking process[J]. J Biomed Mater Res, 2000, 50(3):344-352.
  • 6Wilson RM, Elliott JC, Dowker SE, et al. Rietveld refinements and spectroscopic studies of the structure of Ca-deficient apafite [J]. Biomaterials, 2005, 26(11):1317-1327.
  • 7Chern JM, Lee WF, Hsieh MY. Preparation and swelling characterization of poly (n-isopropylacrylamide)-based porous hydrogels [J]. J Appl Polym Sci, 2004, 92(6):3651-3658.
  • 8Kim UJ, Park J, Kim HJ, et al. Three-dimensional aqueousderived biomaterial scaffolds from silk fibroin[J]. Biomaterials, 2005, 26(15) :2775-2785.
  • 9Uebersax L, Hagenmuller H, Hofmann S, et al. Effect of scaffold design on bone morphology in vitro[J]. Tissue Eng, 2006, 12(12):3417-3429.
  • 10Furuzono T, Yasuda S, Kimura T, et al. Nano-scaled hydroxyapatite/polymer composite IV. Fabrication and cell adhesion pro- perties of a three-dimensional scaffold made of composite material with a silk flbroin substrate to develop a pereutaneous device[J]. J Artif Organs, 2004, 7(3):137-144.

二级参考文献10

  • 1傅荣,杨志明.骨膜成骨细胞培养与生物活性陶瓷复合的实验研究[J].中国修复重建外科杂志,1996,10(4):197-201. 被引量:22
  • 2唐昭,陈治清.大鼠成骨细胞体外培养的研究[J].华西口腔医学杂志,1997,15(1):70-72. 被引量:15
  • 3Bahsmbisa FB, Kappert HF, Schilli W. Inteffacial reaction of osteoblasts to dental and implant materials[J]. J Oral Maxillofec Surg,1994, 52(1) :52-59.
  • 4Thomas JW, Richard WS, Rena B. Design and evaluation ofnanophase alumina for orthopaedi/dental application[J]. Nano-structured Materials, 1999,12(5) :983-988.
  • 5Webster TJ, Ergnn C, Dorenus RH, etal. Fnhanced functions of osteoblasts on nanophase ceramics[J]. Biomaterials, 2000, 21 (17):1803-1810.
  • 6Webster TJ, Schadler LS, Siegel RW, et al. Mechanians of enhanced osteoblast adhesion on nanophase alumina involvevitronectin[J]. Tissue Eng,2001,7 (3) :291-298.
  • 7Webster TJ, Siegel RW, Bizios R. Osteoblast adhesion on nanophase ceramics[J]. Biomaterials, 1999,20(13): 1221-1227.
  • 8Matsuda T, Davies JE. Thein vitro response of osteoblasts to bioactive glass[J]. Biomaterials, 1987, 8(2) :275-280.
  • 9Vronwervelder WC, Groot CG, Degroot K. Histological and chemical evaluation of ostenblasts cultured on bioactive glass, hydroxyapatite,titanium alloy and stainless sted[J].J Pionme Mater Res, 1993,27(4) :465471.
  • 10温波,黄颖,徐勇忠.氧化铝生物陶瓷骨细胞相容性研究[J].吉林大学学报(医学版),2003,29(2):158-160. 被引量:10

共引文献11

同被引文献82

引证文献5

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部