期刊文献+

一种基于概率鲁棒的分散PID控制器设计 被引量:1

Decentralized PID controller design based on probabilistic robustness
原文传递
导出
摘要 基于概率鲁棒方法,针对具有实参数不确定性的多输入多输出被控对象,提出一种分散PID控制器设计方法。根据被控对象模型的参数摄动状态,计算闭环系统满足性能设计要求的概率作为优化算法的目标函数,利用遗传算法对分散PID控制器参数进行优化,用Monte Carlo实验对控制系统进行鲁棒性检验。对5个多变量化工过程进行了仿真试验,并与基于标称参数的设计方法进行比较。仿真结果表明,基于概率鲁棒的分散PID控制器设计方法对模型参数不确定性具有较好的鲁棒性,在被控对象存在一定的不确定性时,系统能以最大的概率满足设计要求。 A tuning method for decentralized PID controllers was developed based on probabilistic robustness for use in multi-input-multi-output plants with varying parameters. The algorithm considers the model uncertainties in calculating the probability that the closed system meets the dynamic performance requirements as the cost function of a genetic algorithm. The algorithm optimizes the decentralized PID controller parameters with the Monte Carlo experiments to :test the control system robustness. The results for five multivariable chemical processes simulated using the method compare well with results of the design method based on nominal conditions. Thus, the method has better robustness in finding the system parameters having the maximum probability of satisfying the design requirements.
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2008年第5期852-855,共4页 Journal of Tsinghua University(Science and Technology)
基金 清华大学热能工程系基础研究基金资助项目
关键词 分散PID控制器 概率鲁棒 MONTE Carlo实验 遗传算法 decentralized PID controller probabilistic robustness Monte Carlo experiment genetic algorithm
  • 相关文献

参考文献5

  • 1吴国垣,李东海,薛亚丽,唐多元.多变量系统分散PID控制器设计[J].清华大学学报(自然科学版),2004,44(11):1567-1570. 被引量:4
  • 2LI Donghai, GAO Furong, XUE Yali, et al. Optimization of decentralized PI/PID controllers based on genetic algorithm.[J]. Asian Journal of Control, 2007, 9(3) : 306 - 316.
  • 3CHEN Xinjia, Aravena J L, ZHOU Kemin. Risk analysis in robust control-Making the case for probabilistic robust control [C]//Proc 2005 American Control Conf. Portland, Oregon: AIAA, 2005: 1533-1538.
  • 4吴淮宁,蔡开元.不确定控制系统概率鲁棒性分析——自适应重要抽样法[J].控制理论与应用,2004,21(5):812-816. 被引量:6
  • 5CHEN Xinjia, ZHOU Kemin, Aravena J L. Fast universal algorithms for robustness analysis [C]//Proc 42nd IEEE Conf on Decision and Control. Maul, 2003:1926 - 1931.

二级参考文献19

  • 1GREEN M,LIMEBEER D J N.Linear Robust Control [M].Englewood Cliffs,NJ:Prentice-Hall,1995.
  • 2BLONDEL V D,TSITSIKLIS J N.A survey of computational complexity results in systems and control [ J].Automatica,2000,36(9):1249-1274.
  • 3STENGEL R F,RAY L R,MARRISON C I.Probabilistic evaluation of control system robustness [ J].Int J Systems and Sciences,1995,26(7):1363-1382.
  • 4BARMISH B R,LAGOA C M.The uniform distribution:A rigorous justification for its use in robustness analysis [ J].Mathemaatics of Control,Signals and Systems,1997,10(3):203-222.
  • 5KHARGONEKAR P P,TIKKU A.Randomized algorithms for robust control analysis and synthesis have polynomial complexity [ C]//Proc of IEEE Conference on Decision and Control.NJ:IEEE Press,1996:3470-3475.
  • 6TEMPO R,BAI E W,DABBENE F.Probabilistic robustness analysis:Explicit bounds for the minimum number of samplings [J].Systems and Control Letters,1997,30(5):237-242.
  • 7VIDYASAGAR M.Statistical learning theory and randomized algorithms for control [ J].IEEE Control Systems Magazine,1998,18(6):69-85.
  • 8CALAFIORE G,DABBENE F,TEMPO R.Randomized algorithms for probabilistic robustness with real and complex structured uncertainty [J].IEEE Trans on Automatic Control,2000,45(12):2218-2235.
  • 9RUBINSTEIN R Y.Simulation and the Monte-Carlo method [ M].New York:John Wiley & Sons,1981.
  • 10BUCHER C G.Adaptive sampling-An iterative fast Monte Carlo procedure [J].Structural Safety,1988,5(2):119-126.

共引文献8

同被引文献10

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部