期刊文献+

非二进制级联码的性能评估

Performance evaluation of non binary concatenated codes
下载PDF
导出
摘要 提出了一种非二进制级联码结构,将非二进制LDPC码(码率R=0.9)和Turbo码(码率R=0.5)串行级联,利用非二进制LDPC码在高信噪比时性能较佳,Turbo码在低信噪比时性能较佳的优势,进一步提高级联码在低信噪比和高信噪比的性能.分析了新的级联码系统在白噪声信道的性能,并与RS码和卷积码级联的RS级联码系统、二进制LDPC码和Turbo码级联的二进制级联码系统在高斯白噪声信道的误码性能和复杂度作了比较,仿真结果显示:在纠错能力方面,二进制和非二进制级联码系统的纠错能力大大优于RS级联码系统,非二进制级联码系统优于二进制级联码系统,在复杂度方面,新的级联码系统的复杂度高于RS级联码系统,但与二进制级联码系统相比,复杂度降低了. A non binary concatenated codes system is proposed and evaluated, in which nonbinary low density parity check (LDPC) codes at high code rate (R=0.9) are linked to Turbo codes at low code rate (R=0.5) in series. Capability of correcting errors was improved by the LDPC codes at high signal noise rate (SNR) and by the Turbo codes at low SNR.. The performance of the new system was analyzed on the additive white Gaussian noise (AWGN) channels. The comparison is made between binary concatenated codes system concatenating binary LDPC codes and turbo codes, and Reed-Solomon (RS) concatenated codes system concatenating RS codes and convolutional codes by simulation. The results show that the performance of non binary concatenated system and binary concatenated system is more better than RS concatenated codes system in correcting error, the performance of non binary concatenated system is better than binary concatenated system in correcting error, non binary concatenated system is more complex than RS concatenated codes system, but is more simple than binary concatenated system.
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2008年第5期31-34,共4页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金重点资助项目(60332030,60496316)
关键词 信道编码 非二进制低密度校验码 TURBO码 级联码 复杂度 channel coding non binary low density parity check codes Turbo codes concatenated codes complexity
  • 相关文献

参考文献9

  • 1Berrou C, Glavieux A, Thitmajshima P. Near Shannon limit error-correcting coding and decoding: Turbo-codes[C]//IEEE Conference Proc Geneva Switzerland: IEEE, 1993: 1 076-1 080.
  • 2Valenti M C. Inserting Turbo code technology into the DVB satellite broadcasting system[C]//MILCOM 2000. 21 st Century Military Communication Conference aproceedings. Los Angles, USA: [s. n], 2000: 650-654.
  • 3MacKay D J C. Good error-correcting codes based on very sparse matrices[J]. IEEE Transactions on Informarion Theory, 1999, 45(2): 399-431.
  • 4Kschischang F R, Frey B J, Loeliger H A. Factor graphs and the sum-product algorithm [J]. IEEE Trans on Informormation Theory, 2001, 47(2): 498- 519.
  • 5Davey M C, MacKay D J C. Low-density panty check codes over GF(q)[J]. IEEE communication Letters, 1998, 2(6): 165-167.
  • 6Tanner R. Minimun distance bounds by graph analysis[J]. IEEE Trans Inform Theory, 2001, 47 (2): 808-821.
  • 7Kou Y, Lin S, Fpssproer M P C. Loe-density paritycheck codes based on finite geometries: a rediscovery and new results[J]. IEEE Trans Inform Theory, 2001, 47(7):2 711-2 736.
  • 8Kou Y, Lin S, Fpssproer M P C. Loe-density paritycheck codes based on finite geometries: a rediscovery and new results [J]. IEEE Trans Inform Theory, 2001, 47(7): 2 711-2 736.
  • 9Hu X Y, Eleftheriou E, Arnold D M. Progressive edge-growth tanner graphs [ES/OL]. [2006-10-12] http: // ieeexplore, ieee. org/ie15/18/30067/ 01377521. pdf.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部