期刊文献+

基于奇异性的语音端点检测方法 被引量:1

Speech endpoint detection algorithm based on singularity
下载PDF
导出
摘要 噪声信号对于语音信号是相对奇异的。小波变换是分析信号奇异性的有利工具。在利用小波对含噪语音进行分析研究的基础上,提出了一种新的端点检测方法。该算法利用了基于信号奇异性的统计特征和高低频能量比特征。实验结果表明,在低信噪比的情况下,该算法依然能有效地进行语音分割。 White noise signal is singularer than speech signal, Singularity theory ofdetecting signal based on wavelet transtorm is appned to the detection of speech endpoint, on which, a new speech endpoint detection algorithm is proposed. The algorithm is based on the statistic characteristics of singularity and the ratio of high/low spectral energy. The simulation results show that this method is efficient to segment speech even at a low signal-to-noise ratio (SNR).
出处 《计算机工程与设计》 CSCD 北大核心 2008年第10期2591-2594,共4页 Computer Engineering and Design
关键词 小波变换 端点检测 奇异性 高低频能量比 鲁棒性 wavelet transform speech endpoint detection singularity ratio of high/low spectral energy robust
  • 相关文献

参考文献9

二级参考文献24

  • 1Lee C H,Automatic Speech and speaker recognition-advanced topics,1996年
  • 2GRIEDER W, KINSNER W. Speech Segmentation by Variance Fractal Dimension [J]. Electrical and Computer Engineering,1994, (2): 481-485.
  • 3CHEN LIANG, ZHANG XIONG-WEI. New Methods of Speech Segmentation and Enhancement Based on Fractal Dimension [J]. Signal Processing Proceedings, 2000, (1): 281-284.
  • 4OGATA S, SHIMAMURA T. Reinforced Spectral Subtraction Method to Enhance Speech Signal [ J ]. Electrical and Electronic Technology, 2001, ( 1 ): 242 -245.
  • 5PORUBA J. Speech Enhancement Based on Nonlinear Spectral Subtraction [ J ]. Devices, Circuits and Systems, 2002: T031-1- T031-4.
  • 6PANDEY P C, BHANDARKAR S M, BACHHER G K, et al. Enhancement of Alaryngeal Speech Using Spectral Subtraction [J]. Digital Signal Processing, 2002, (2): 591-594.
  • 7J L Shen,J W Hung,L S Lee.Robust Entropy-based Endpoint Detection for Speech Recognition in Noisy Environments[C].Proceedings of ICSLP-98,1998.
  • 8韩声栋 袁三男.通信原理(读本)[M].上海交通大学电子工程系,2000.11-12.
  • 9L R Rabiner,B H Juang.Fundamentals of Speech Recognition[M].Prentice Hall:1993,154-155.
  • 10L S Huang,C H Yang.A Novel Approach to Robust Speech Endpoint Detection in Car Environments[J].IEEE Conference on Acoustics,Speech,and Signal Processing,2000,3(5-9):1751-1754.

共引文献97

同被引文献7

  • 1王卓,苏牧,李鹏,徐波.噪音环境下基于高阶谱的端点检测算法[J].中文信息学报,2004,18(5):70-77. 被引量:3
  • 2Li I.A robust real-time endpoint detector with energy normalization for ASR in adverse environments[C].Salt Lake City:Proc ICASSP,2007:156-159.
  • 3Wu Bing fey, WANG Kun chin.Robust endpoint detection algorithm based on the adaptive band partitioning spectral entropy in adverse environments [J]. IEEE Transition Speech and Audio Processing,2008,13(5):762-775.
  • 4Wu GD,Lin CT.Word boundary detection with Mel-Scale frequency bank in noisy environment[J].IEEE Transition Speech and Audio Processing,2000,8(5):541-554.
  • 5Nemmer E,Libran R,M amour S.Robust VO ice act invitee detection using higher order statistics in the LPC residual domain [J].IEEE Transition Speech and Audio Processing,2008,9 (3): 217-231.
  • 6Chang H Y, So NK, Susan to R.An invertible frequency domain transformation for masking-based sub space speech enhancement[J].IEEE Signal Processing Letters,2005,12:461-464.
  • 7李宏言,盛利元,陈妮.基于矢量量化和查找表的改进DTW语音识别方法[J].计算机工程与设计,2007,28(19):4702-4704. 被引量:3

引证文献1

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部