摘要
噪声信号对于语音信号是相对奇异的。小波变换是分析信号奇异性的有利工具。在利用小波对含噪语音进行分析研究的基础上,提出了一种新的端点检测方法。该算法利用了基于信号奇异性的统计特征和高低频能量比特征。实验结果表明,在低信噪比的情况下,该算法依然能有效地进行语音分割。
White noise signal is singularer than speech signal, Singularity theory ofdetecting signal based on wavelet transtorm is appned to the detection of speech endpoint, on which, a new speech endpoint detection algorithm is proposed. The algorithm is based on the statistic characteristics of singularity and the ratio of high/low spectral energy. The simulation results show that this method is efficient to segment speech even at a low signal-to-noise ratio (SNR).
出处
《计算机工程与设计》
CSCD
北大核心
2008年第10期2591-2594,共4页
Computer Engineering and Design
关键词
小波变换
端点检测
奇异性
高低频能量比
鲁棒性
wavelet transform
speech endpoint detection
singularity
ratio of high/low spectral energy
robust