期刊文献+

On the Ricci Curvature of a Randers Metric of Isotropic S-curvature 被引量:3

On the Ricci Curvature of a Randers Metric of Isotropic S-curvature
原文传递
导出
摘要 We derive the integral inequality of a Randers metric with isotropic S-curvature in terms of its navigation representation. Using the obtained inequality we give some rigidity results under the condition of Ricci curvature. In particular, we show the following result: Assume that an n-dimensional compact Randers manifold (M, F) has constant S-curvature c. Then (M, F) must be Riemannian if its Ricci curvature satisfies that Ric 〈 -(n - 1)c^2. We derive the integral inequality of a Randers metric with isotropic S-curvature in terms of its navigation representation. Using the obtained inequality we give some rigidity results under the condition of Ricci curvature. In particular, we show the following result: Assume that an n-dimensional compact Randers manifold (M, F) has constant S-curvature c. Then (M, F) must be Riemannian if its Ricci curvature satisfies that Ric 〈 -(n - 1)c^2.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2008年第6期911-916,共6页 数学学报(英文版)
基金 the National Natural Science Foundation of China (10471001)
关键词 Finsler manifold Randers metric Ricci curvature Finsler manifold, Randers metric, Ricci curvature
  • 相关文献

参考文献1

  • 1MO Xiaohuan, SHEN Zhongmin & YANG Chunhong LMAM, School of Mathematical Sciences, Peking University, Beijing 100871, China,Department of Mathematical Sciences, Indiana University-Purdue University, Indianapolis, IN 46202-3216, USA,Department of Mathematics, Inner Mongolia University, Hohhot 010021, China.Some constructions of projectively flat Finsler metrics[J].Science China Mathematics,2006,49(5):703-714. 被引量:15

二级参考文献9

  • 1[1]Hamel,G.,(U)ber die Geometrieen in denen die Geraden die Kürzesten sind,Math.Ann.,1903,57:231-264.
  • 2[2]Shen,Z.,Projectively flat Finsler metrics of constant flag curvature,Trans.of Amer.Math.Soc.,2003,355(4):1713-1728.
  • 3[3]Chen,X.,Mo,X.,Shen,Z.,On the flag curvature of Finsler metrics of scalar curvature,J.London Math.Soc.,2003,68(2):762-780.
  • 4[4]Berwald,L.,(U)ber die n-dimensionalen Geometrien konstanter Krümmung,in denen die Geraden die kürzesten sind,Math.Z.,1929,30:449-469.
  • 5[5]Shen,Z.,Projectively flat Randers metrics of constant curvature,Math.Ann.,2003,325:19-30.
  • 6[6]Shen,Z.,Landsberg curvature,S-curvature and Riemann curvature,in A Sampler of Riemann-Finsler Geometry,MSRI Series,Vol.50,Cambridge:Cambridge University Press,2004.
  • 7[7]Kitayama,M.,Azuma,M.,Matsumoto,M.,On Finsler spaces with (α,β)-metric,Regularity,geodesics and main scalars,J.Hokkaido Univ.Education (Section Ⅱ A),1995,46(1):1-10.
  • 8[8]Matsumoto,M.,Finsler spaces with (α,β)-metric of Douglas type,Tensor,N.S.,1998,60:123-134.
  • 9[1]Shen,Z.M.,Yildirim,G.C.,On a class of projectively flat metrics with constant flag curvature,preprint.

共引文献14

同被引文献4

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部