摘要
We derive the integral inequality of a Randers metric with isotropic S-curvature in terms of its navigation representation. Using the obtained inequality we give some rigidity results under the condition of Ricci curvature. In particular, we show the following result: Assume that an n-dimensional compact Randers manifold (M, F) has constant S-curvature c. Then (M, F) must be Riemannian if its Ricci curvature satisfies that Ric 〈 -(n - 1)c^2.
We derive the integral inequality of a Randers metric with isotropic S-curvature in terms of its navigation representation. Using the obtained inequality we give some rigidity results under the condition of Ricci curvature. In particular, we show the following result: Assume that an n-dimensional compact Randers manifold (M, F) has constant S-curvature c. Then (M, F) must be Riemannian if its Ricci curvature satisfies that Ric 〈 -(n - 1)c^2.
基金
the National Natural Science Foundation of China (10471001)