期刊文献+

Parametrization of the Teichmüller Space of Bordered Surface NEC Groups

Parametrization of the Teichmüller Space of Bordered Surface NEC Groups
原文传递
导出
摘要 A non-Euclidean crystallographic group F (NEC group, for short) is a discrete subgroup of isometries of the hyperbolic plane H, with compact quotient space H/Г. These groups uniformize Klein surfaces, surfaces endowed with dianalytic structure. These surfaces can be seen as a generalization of Riemann surfaces. Fundamental polygons play an important role in the study of parametrizations of the Teichmuller space of NEC groups. In this work we construct a class of right-angled polygons which are fundamental regions of bordered surface NEC groups. The free parameters used in the construction of the polygons give a parametrization of the Teichmuller space. From the parameters we obtain explicit matrices of the generators of the groups. Finally, we give examples to exhibit how different relations between the parameters reflect the existence of automorphisms on the quotient surfaces. A non-Euclidean crystallographic group F (NEC group, for short) is a discrete subgroup of isometries of the hyperbolic plane H, with compact quotient space H/Г. These groups uniformize Klein surfaces, surfaces endowed with dianalytic structure. These surfaces can be seen as a generalization of Riemann surfaces. Fundamental polygons play an important role in the study of parametrizations of the Teichmuller space of NEC groups. In this work we construct a class of right-angled polygons which are fundamental regions of bordered surface NEC groups. The free parameters used in the construction of the polygons give a parametrization of the Teichmuller space. From the parameters we obtain explicit matrices of the generators of the groups. Finally, we give examples to exhibit how different relations between the parameters reflect the existence of automorphisms on the quotient surfaces.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2008年第6期1039-1056,共18页 数学学报(英文版)
基金 MTM2005-01637
关键词 non-Euclidean crystallographic groups hyperbolic polygons Klein surfaces automorphisms of surfaces Teichmfiller space non-Euclidean crystallographic groups, hyperbolic polygons, Klein surfaces, automorphisms of surfaces, Teichmfiller space
  • 相关文献

参考文献21

  • 1Alling, N. L., Creanleaf, N.: Foundations of the theory of Klein Surfaces. Lect. Not. in Math., Vol. 219, Springer-Verlag, 1971
  • 2Preston, R.: Projective structures and fundamental domains on compact Klein surfaces. Doctoral Thesis, Univ. of Texas, 1975
  • 3Buser, P.: Geometry and Spectra of Compact Riemann Surfaces. Progress in Mathematics, 106, Birkhauser, 1992
  • 4Maskit, B.: New parameters for Fuchsian groups of genus 2. Proc. Amer. Math. Soc., 127, 3643-3652 (1999)
  • 5Okumura, Y.: Global real analytic length parameters for Teichmuller spaces. Hiroshima Math. J., 2{}, 167-179 (1996)
  • 6Okumura, Y.: Global real analytic angle parameters for Teichmfiller spaces. J. Math. Soc. Japan, 49, 213 229 (1997)
  • 7Schmutz Schaller, P.: Teichmiiller space and fundamental domains of Fuchsian groups. Enseign. Ma$h., 45(2), 169-187 (1999)
  • 8Seppala, M., Sorvali, T.: Parametrization of Teichmuller spaces by geodesic length functions. Holomorphic functions and moduli, Vol. Ⅱ(Berkeley, 1986), 267 284, Math. Sci. Res. Inst. Publ., 11, Springer 1988
  • 9Macbeath, A. M., Singerman, D.: Spaces of subgroups and Teichmuller spaces. Proc. London Math. Soc., 31, 211-256 (1975)
  • 10Estrada, B., Martinez, E.: Coordinates for the Teichmiiller space of planar surface NEC groups. Int. J. of MaSh., 14, 1037-1052 (2003)

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部