期刊文献+

用三维有限元求解金属淬火过程的换热系数 被引量:4

Solution of invert problem of heat conduct equation during quenching by three-dimensional finite element method
下载PDF
导出
摘要 在金属淬火过程的数值模拟中,换热系数的正确求解是工件温度场、应力/应变场模拟结果与实际相符合的先决条件.据此研究和分析了换热系数反求法的数学模型,分别采用一维和三维有限元法对该数学模型求解.研究表明:与采用一维有限差分的求解法相比较,计算过程由一维有限元法增加到三维有限元法,与实际情况更为接近;用有限元方法求解的换热系数曲线连续且平滑,结果可靠,且编程量小;用求得的换热系数计算金属淬火试件的中心温度场变化曲线,计算结果与实测数据相吻合. In numerical simulation of steel quenching process, the correct solution of heat transfer coefficient is the precondition of simulating the temperature field and stress/strain field. Thus a mathematical mode of inverse problem of Heat Conduct Equation was analyzed, and a solution of it by 1D and 3D Finite Element Method (FEM) was presented. Comparing with 1 D Finite Difference Method (FDM), calculation result of 3D FEM is closer to the practice. FEM is more effective to solve differential equation than FDM. The curve of heat transfer coefficient solved by 1 D or 3 D FEM is more coherent and smoother than that solved by FDM. And the curve of central temperature field of the part was calculated, the result corresponds to the experimental data.
作者 黄鹏 魏兴钊
出处 《材料科学与工艺》 EI CAS CSCD 北大核心 2008年第2期204-206,210,共4页 Materials Science and Technology
基金 广东省科技计划资助项目(2003C102042)
关键词 淬火 换热系数 有限元 quenching surface heat transfer coefficient finite element method
  • 相关文献

参考文献6

二级参考文献21

  • 1Donald.R.Pitts,Leigaton.E.Sissom.USA Theory and problems of Heat transfer,1977
  • 2寿纪麟.数学建模,1995,(11).
  • 3程赫明,王洪纲,陈铁力.45钢淬火过程中热传导方程逆问题求解[J].金属学报,1997,33(5):467-472. 被引量:22
  • 4Osman A M, Beck J V. Heat Transfer, 1990; 112:843.
  • 5Naylor D, Osthuizen P H. In: Proceedings of the First Conference on Inverse Problems in Engineering, New York: ASME, 1993:125.
  • 6Taler J, Zima W. Heat and Mass Transfer, 1999; 42:1123.
  • 7Hernandez-Morales B, Brimacombe J K, Hawbolt E B. In:Proceedings of the ASME Heat Transfer Division, New York: ASME, 1995:559.
  • 8Chantasiriwan S. Heat and Mass Transfer, 2000; 42:4275.
  • 9Johnson A W, Mehl R F. Trans AIME, 1939; 135:416.
  • 10Koistinen D F, Marburger R E. Acta Metall, 1959; 7:59.

共引文献72

同被引文献21

  • 1何鹤林.淬火冷却过程中的换热系数的计算[J].现代制造工程,2004(6):68-69. 被引量:8
  • 2宿德军,陈军.热处理过程数值模拟的研究现状和发展趋势[J].模具技术,2004(6):54-57. 被引量:9
  • 3李辉平,赵国群,牛山廷,栾贻国.基于有限元和最优化方法的淬火冷却过程反传热分析[J].金属学报,2005,41(2):167-172. 被引量:21
  • 4ABDULHAY B, BOUROUGA B, DESSAIN C, et al. Experimental study of heat transfer in hot stamping process[J]. International Journal of Material Forming, 2009, 2(1): 255-257.
  • 5TEKKAYA A E, KARBASIAN H, HOMBERG W, et al. Thermo-mechanical coupled simulation of hot stamping components for process design[J]. Computer Aided Engineering, 2007, 1(1): 85-89.
  • 6LEE M G, KIM S J, HAN H N, et al. Application of hot press forming process to manufacture anautomotive part and its finite element analysis considering phase transformation plasticity[J]. International Journal of Mechanical Sciences, 2009, 51 (11 - 12):888-898.
  • 7LI H P, ZHAO G Q, NIU S T, et al. Inverse heat conduction analysis of quenching process using finite-element and optimization method[J]. Finite Elements inAnalysis and Design, 2006, 42(12): 1087-1096.
  • 8BOSETTI P, BRUSCHI S, STOEHR T, et al. Interlaboratory comparison for heat transfer coefficient identification in hot stamping of high strength steels[J]. International Joumal of Material Forming, 2010, 3(Suppl.): 817-820.
  • 9ABDULHAY B, BOUROUGA B, DESSAIN C. Thermal contact resistance estimation: Influence of the pressure contact and the coating layer during a hot forming process[J]. International Journal of Material .Forming, 2012, 5(3): 183-197.
  • 10ABDULHAY B, BOUROUGA B. DESSAIN C, et al. Development of estimation procedure of contact heat transfer coefficient at the part-tool interface in hot stamping process[J]. Heat Transfer Engineering, 2011, 32(6): 497-505.

引证文献4

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部