期刊文献+

电磁场中圆柱绕流的开环和优化控制 被引量:2

原文传递
导出
摘要 对圆柱绕流的电磁控制进行了实验和数值研究.实验在转动水槽中进行,通过吊杆将装有电磁激活板的圆柱插在槽内液体中.吊杆上的应变片用于测试圆柱的阻力,注入适当的染料用来显示流场.数值模拟时,流场的基本方程为指数极坐标中考虑场力的Navier-Stokes方程,计算采用ADI格式和FFT格式.结果表明,实验与计算所描述的流场具有相同的变化趋势.在开环控制时,即Lorentz力为常数时,旋涡脱体可被有效抑制,涡街消除,阻力减少.另外,基于上述Navier-Stokes方程,推导了优化控制所需的伴随方程,并利用同样的数值方法对此进行数值求解.根据伴随优化理论得到实时变化的优化控制参数,对优化控制过程中的流场变化进行了讨论.
出处 《科学通报》 EI CAS CSCD 北大核心 2008年第9期1026-1031,共6页 Chinese Science Bulletin
  • 相关文献

参考文献20

  • 1Roshko A. On the weak and drag of bluff bodies. J Aeronaut Sci, 1955, 22:124-132.
  • 2WiUiamson C H K. Vortex dynamics in the cylinder wake. Ann Rev Fluid Mech, 1996, 28:477-539.
  • 3Kwon K, Choi H. Control of laminar vortex shedding behind a circular cylinder using splitter plates. Phys Fluids, 1996, 8:479-486.
  • 4Strykowski P J, Sreenivasan K R. On the formation and suppression of vortex ‘shedding' at low Reynolds numbers. J Fluid Mech, 1990, 218:71-107.
  • 5Tokumaru P T, Dimotakis P E. Rotary oscillatory control of a cylinder wake. J Fluid Mech, 1991, 224:77-90.
  • 6Roussopoulos K. Feedback control of vortex shedding at low Reynolds numbers. J Fluid Mech, 1993, 248:267-296.
  • 7Li Z J, Navon I M, Hussaini M Y, et al. Optimal control of cylinder wakes via suction and blowing. Comput Fluids, 2003, 32:149-171.
  • 8Lecordier L C, Browne L W B, Le Masson S, et al. Control of vortex shedding by thermal effect at low Reynolds numbers. Exp Therm Fluid Sci, 2000, 21:227-237.
  • 9Wu C J, Xie Y Q, WuJ z. "Fluid roller bearing" effect and flow control. Acta Mech Sin, 2003, 19:476-484.
  • 10Wu C J, Wang L, Wu J Z. Suppression of the von Karman vortex street behind a circular cylinder by a traveling wave generated by a flexible surface. J Fluid Mech, 2007, 574:365-391.

二级参考文献14

  • 1Gailitis A, Lielausis O. On a possibility to reduce the hydrodynamical resistance of a plate in an electrolyte. Applied Magnetohydrodynamics, 1961, 12:143~146
  • 2Henoch C, Stace J. Experimental investigation of a salt water turbulent boundary larger modified by an applied streamwise magnetohydrodynamic body force. Phys Fluid,1995, 7(6): 1371~1382
  • 3Weier T, Gerbeth G, Posdziedch O, et al. Experiments on cylinder wake stabilization in an electrolyte solution by means of electromagnetic forces localized on the cylinder surface. Experimental Thermal and Fluid Science, 1998,16:84~91
  • 4Kim Seong-jae,Lee Choung-mook. Investigation of the flow around a circular cylinder under the influence of an electromagnetic force. Experiments in fluids, 2000, 28:252~260
  • 5[1]Gailitis A, Lielausis O. On a possibility to reduce the hydrodynamical resistance of a plate in an electrolyte.Applied Magnetohydrodynamics, 1961, 12:143~146
  • 6[2]Meng JCS. Major engineering physics for optimization of the seawater superconducting electromagnetic thruster.In: Branover H, Unger Y Eds. Progress in Astronautics and Aeronautics, USA: Washington DC, 1990, 148:183~208
  • 7[3]Motora S, Takezawa S. Development of MHD ship propulsion and results of sea traials of an experimental ship.In: Second International Conference on Energy Transfer in MHD Flow, France: Anssois, 1994.501~510
  • 8[4]Mutschke G, Satrov V, Gerbeth G. Cylinder wake control by magnetic field in liquid metal flows. Experimental Thermal and Fluid Science, 1998, 16:92~99
  • 9[5]Henoch C, Stace J. Experimental investigation of a salt water turbulent boundary lager modified by an applied streamwise magnetohydrodynamic body force. Phys Fluid, 1995, 7(6): 1371~1382
  • 10[6]Crawford CH, Kamiadakis GE. Rynolds stress analysis of EMHD-controlled wall turbulence. Part I streamwise forcing. Phys Fluid, 1997, 9(3): 788~806

共引文献42

同被引文献21

  • 1周本谋,范宝春,陈志华,叶经方,丁汉新,靳建明.流体边界层上电磁力的控制效应研究[J].力学学报,2004,36(4):472-478. 被引量:22
  • 2Prandtl L. Uber Flussigkeitsbewegung bei sehr kleiner Reibung. Verh III Intern Math Kongr, 1904:484--491.
  • 3Choi K S. European drag-reduction research Recent developments and current status. Fluid Dyn Res, 2000, 26(5): 325--335.
  • 4Tardu S. Active control of near-wall turbulence by local oscillating blowing. J Fluid Mech, 2001, 439:217--235.
  • 5Ferrante A, Elghobashi S. On the physical mechanisms of drag reduction in a spatially developing turbulent boundary layer laden with microbubbles. J Fluid Mech, 2004, 503:345- 355.
  • 6Lee S T, Jang Y G. Control of flow around a NACA 0012 airfoil with a micro-riblet film. J Fluids Struct, 2005, 20(5): 659--672.
  • 7Kumar V, Aloi F S. Efficient control of separation using microjets. AIAA Paper, 2005, 2005-4879.
  • 8Min T, Yoo J Y, Choi H, et al. Drag reduction by polymer additives in a turbulent channel flow. J Fluid Mech, 2003, 486:213--238.
  • 9Gailitis A, Lielausis O. On a possiblility to reduce the hydrodynamic resistance of a plate in an electrolyte. Appl Magnetohydrodynamics, 1961, 12:143--146.
  • 10Henoch C, Stace J. Experimental investigation of a salt water turbulent boundary layer modified by an applied streamwise magnetohydrodynamic body force. Phys Fluids, 1995, 7(6): 1371 -1383.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部