期刊文献+

拮抗菌B501的鉴定及其对采后冬枣黑斑病的抑制效果 被引量:13

Identification of Bacterial Strain B501 and Its Biocontrol Activity against Black Spot on Jujube Fruits
下载PDF
导出
摘要 细菌菌株B501分离自冬枣表面,根据其理化性质和16S rDNA序列的进化树分析,鉴定为成团泛菌(Pantoea agglomerans)。菌株B501对链格孢引起的冬枣黑斑病有明显的防治作用,其防病效果与使用浓度成正比,浓度为1×107cfu/ml时对冬枣黑斑病的抑制率达80%以上。该菌在冬枣伤口上有较强的定殖能力,添加2%CaCl2可提高其在伤口处的菌群数量;而50μg/ml浓度的扑海因则对伤口处拮抗细菌数量有一定的抑制。菌株B501与链格孢在PDA平板对峙试验中不产生抑菌圈,其活菌液处理冬枣的防病效果较好,而培养滤液和灭菌培养液则无防病效果,其防病机制可能与空间和营养竞争有关。 Strain B501 was isolated from surface of jujube fruit and showed antagonistic activity against the black spot disease caused by Alternaria alternata on jujube fruits. This bacterium was identified as Pantoea agglomerans according to the physiological, biochemical properties and the phylogenetic analysis of its 16S rDNA sequence. B501 could noticeably reduce the incidence of the black spot when applied on wounded fruits at a relatively low concentration of 1×10^7 cfu/ml, and there was a significantly positive correlation between the concentrations of strain B501 and its antagonistic activity. Strain B501 colonized with a large population in wounds on jujube fruits. The presence of calcium chloride at 2% concentration significantly increased the population of B501, whereas adding 50 μg/ml of iprodione reduced the colonizing ability of this bacterium. The preliminary action model study showed that P. agglomerans B501 eould not inhibit the myeelial growth of A. alternata on medium, and the eells alive rather than autoelaved euhure and eell-free cultural filtrate provided the proteetion against A. alternate.
出处 《中国生物防治》 CSCD 北大核心 2008年第2期122-127,共6页 Chinese Journal of Biological Control
基金 中澳合作ACIAR资助项目(PHT/1998/140) 国家863计划(2006AA10A211) 山西省农业科学院博士基金(YBSJJ0703)
关键词 黑斑病菌 成团泛菌 生物防治 冬枣 Alternaria alternata Pantoea agglomerans biological control jujube
  • 相关文献

参考文献24

  • 1Bus V G, Bongers A J, Risse L A. Occurrence of Penicillium digitatum and Penicillium italicum resistant to benomyl, thiabendazole and imazalil on citrus fruit from different geographic origins[J]. Plant Disease, 1991, 74: 134- 137.
  • 2El-Ghaouth A, Wilson C L. Biologlcally-based technologies for the control of postharvest diseases[J]. Postharvest Biology and Technology, 1995, 6: 5- 11.
  • 3Roberts R G. Postharvest biological control of grey mould of apple by Cryptococcus laurentii[J]. Phytopathology, 1990, 80:526 - 530.
  • 4Wisniewski M E, Wilson C L. Biological control of postharvest diseases of fruits and vegetables: recent advances[J]. Hortscience, 1992, 27: 94-98.
  • 5Janisiewicz W J, Korsten L. Biological control of postharvest diseases of fruits[J]. Annual Review of Phytopathology, 2002, 40:411 -441.
  • 6Janisiewicz W J, Jeffers S N. Efficacy of commercial formulation of two biofungicides for control of blue mold and gray mold of apples in cold storage[J]. Crop Protection, 1997, 16: 629-633.
  • 7Wan Y K, Tian S P, Qin G Z. Enhancement of biocontrol activity of yeasts by adding sodium bicarbonate or ammonium molybdate to control postharvest disease of jujube frults[J] . Letters in Applied Microbiology, 2003, 37: 249- 253.
  • 8Tian S P, Qin G Z, Xu Y. Synergistic effects of combining biocontrol agents with silicon against postharvest disease of jujube fruit[J]. Journal of Food Protection, 2005, 68(3) : 544 - 550.
  • 9Buchanan R E, Bergey N E. Bergey's Manual of Determinative Bacteriology (9th ed)[ M]. Baltimore: Williams & Wilkins Company, 1994.
  • 10Janisiewicz W J, Usall J, Bors B. Nutritional enhancement of biocontrol of blue mold on apples[J]. Phytopathology, 1992, 82: 1364- 1370.

二级参考文献20

  • 1[1]Edwards,P.R.Edwards & Ewing of identification of Enteroba-cteriaceae(4th ed.)[M]. New York, Elsevier,1986,391~415.
  • 2[2]Sharma, P. K.and McCarty, P. L.Isolation and characterization of a facultatively aerobic bacterium that reductively dehalogenates tetrachloroethene to cis-1,2-dichloroethene[J].Appl. Environ. Microbiol,1996,62:761~765.
  • 3[3]Meng, M. et al.Denitration of glycerol trinitrate by resting cells and cell extracts of Bacillus thuringiensis/cereus and Enterobacter agglomerans[J].Appl. Environ. Microbiol,1995,61:2548~2553.
  • 4[4]Barbirato, F.et al. Physiologic mechanisms involved in accumula-tion of 3-hydroxypropionadehyde during fermentation of glycerol by Enterobacter agglomerans[J].Appl. Environ.Microbiol,1996,62:4405~4409.
  • 5[5]Saygili H. et al. Laboratory and field trials with selected mic-roorganisms as biocontrol agents for fire blight[J].Acta Horticulturae,1999,655~661.
  • 6[6]Braun K.A.et al.Biological control of Pseudomonas syringae pv. syringae, the causal agent of basal kernel blight of barley by antagonistic Pantoea agglomerans[J]. Phytopathology,2000,90(4):368~375.
  • 7[7]Mukhopadhyay, K. et al. Identification and characterization of bacterial endophytes of rice[J].Mycopathologia,1996,134:151~159.
  • 8[8]Chernin, L. et al. Pyrrolnitrin production by an Enterobacter agglomerans strain with a broad spectrum of antagonistic activity towards fungal and bacterial phytopathogens[J].Curr.Microbiol,1996,32:208~212.
  • 9[9]Jespers,B.K. et al. Interference of the phenylpyrrole fungicide fenpriclonil with membranes and membrane function. Pestic Sci,1994,40:133~140.
  • 10[10]Zimmer,W.et al.Demonstration of the indolepyruvate decar-boxylase gene homologue in different auxin-producing species of the Enterobacteriaceae[J]. Can.J.Microbiol,1994,40:1072~1076.

共引文献18

同被引文献141

引证文献13

二级引证文献79

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部