摘要
考虑非线性矩阵方程X-A~*X^(-1)A=Q,其中A是n阶复矩阵,Q是n阶Hermite正定解,A~*是矩阵A的共轭转置.本文证明了此方程存在唯一的正定解,并推导出此正定解的扰动边界和条件数的显式表达式.以上结果用数值例子加以说明.
Consider the nonlinear matrix equation X-A*x^-1A=Q, where A, Q are n ×n complex matrices with Q Hermitian positive definite and A* denotes the conjugate transpose of a matrix A. This paper shows there exists a unique positive definite solution to the equation. The perturbation bounds for the Hermitian positive definite solution to the matrix equation are derived, explicit expressions of the condition number for the Hermitian positive definite solution are obtained and the backward error of an approximate solution to the Hermitian positive definite solution is evaluated. The results are illustrated by numerical examples.
出处
《计算数学》
CSCD
北大核心
2008年第2期129-142,共14页
Mathematica Numerica Sinica
基金
山东大学威海分校青年成长基金(z200608)
关键词
矩阵方程
正定解
扰动边界
条件数
matrix equation, positive definite solution, perturbation bound, condition number