期刊文献+

具有边界控制的线性Timoshenko型系统的指数稳定性 被引量:1

EXPONENTIAL STABILITY OF A SYSTEM OF LINEAR TIMOSHENKO TYPE WITH BOUNDARY CONTROLS
原文传递
导出
摘要 研究多孔弹性材料在实际应用中的稳定性问题.多孔物体的动力学行为由线性Timoshenko型方程描述,这样的系统一般只是渐近稳定但不指数稳定.假定系统在一端简单支撑,另一端自由,在自由端对系统施加边界反馈控制,讨论闭环系统的适定性和指数稳定性.首先,证明了由闭环系统决定的算子A是预解紧的耗散算子、生成C_0压缩半群,从而得到了系统的适定性.进一步通过对系统算子A的本征值的渐近值估计,得到算子谱分布在一个带域,相互分离的,模充分大的本征值都是A的简单本征值.通过引入一个辅助算子A_0,利用算子A_0的谱性质以及算子A与A_0之间的关系,得到了A的广义本征向量的完整性以及Riesz基性质.最后利用Riesz基性质和谱分布得到闭环系统的指数稳定性. In the present paper the stabilization problem of porous elastic solids is considered. The kinetic behavior of porous solids is governed by equations of linear Timoshenko type which is generally asymptotically stable but not exponentially stable. For the exponential stability, boundary velocity feedback controls are applied with one end clamped and the other free. Firstly, it is shown that the operator determined by the system is dissipative and generates a C0 semigroup. Hence the well-posed-ness of the system follows from the semigroup theory of bounded linear operators. Secondly, the asymptotic behavior of eigenvalues of .A is obtained under certain condition. Moreover by using an auxiliary operator .A0, and by means of spectral properties of .A0 , it is proven that there is a sequence of generalized eigenvectors of .A which forms a Riesz basis for Hilbert state space. Finally, the exponential stability of the closed loop system is given by use of the Riesz basis property and spectral distribution of A.
作者 杜燕 许跟起
机构地区 天津大学数学系
出处 《系统科学与数学》 CSCD 北大核心 2008年第5期554-575,共22页 Journal of Systems Science and Mathematical Sciences
基金 国家自然科学基金(NSFC-60474017) 教育部南开-天津大学刘徽应用数学中心资助课题.
关键词 线性Timoshenko型系统 边界反馈控制 RIESZ基 指数稳定性 Linear Timoshenko type system, boundary feedback control, Riesz basis exponential stability.
  • 相关文献

参考文献14

  • 1Cowin S C and Nunziato J W. Linear elastic materials with voids. J. Elasticity, 1983, 13: 125-147.
  • 2Nunziato W and Cowin S C. A nonlinear theory of elastic matericals with voids. Arch. Rational Mech. Anal. 1979, 72: 175-201.
  • 3Cowin S C. The viscoelastic behavior of linear elastic matericals with viods. J. Elasticity, 1985, 15: 185-191.
  • 4Ciarletta M and Iesan D. Non-Classical Elastic Solids. New York: Pitman Research Notes in Mathematics Series 293, 1993.
  • 5Quintanilla R. Slow dacay for one-dimensional Porous dissipation elasticity. Appl. Math. Letters, 2003, 16 : 487-491.
  • 6Xu G Q and Feng D X. Riesz basis property of a Timoshenko beam with boundary feedback and application. IMA Journal of Applied Mathematics, 2002 , 67: 357-370.
  • 7Xu G Q and Yung S P. Stabilization of Timoshenko beam by means of pointwise controls. ESAIM Control Optim. Calc. Var., 2003, 9:579-600 (electronic).
  • 8Xu G Q, Feng D X and Yung S P. Riesz basis property of the generalized eigenvector system of a Timoshenko beam. IMA Journal of Mathematical Control and Information, 2004, 21: 65-83.
  • 9Shubov M A. Asymptotic and spectral analysis of the spatially nonhomogeneous Timoshenko beam model. Math. Nachr., 2002, 241: 125-162.
  • 10Vu QuocPhong, Wang Junmin, Xu Genqi and Yung Siu-Pang. Spectral analysis and system of fundamental solutions for Timoshenko beams. Applied Mathematics Letter, 2005, 18(2): 127-134.

同被引文献14

  • 1张伟,陈立群.轴向运动弦线横向振动控制的Lyapunov方法[J].控制理论与应用,2006,23(4):531-535. 被引量:10
  • 2LOGAN J D. Applied mathematics [ M ]. New York: Wi- ley, 2006.
  • 3VANDEGRIFF M W, LEWIS F L, ZHU S Q. Flexible- link robot arm control by a feedback linearization/singular perturbation approach [ J 1. Journal of Robotic Systems, 1994, 11(7) : 591 -603.
  • 4BALAS M J. Feedback control of flexible systems [ J ]. IEEE Transactions on Automatic Control, 1978, 23 (4) : 673 - 679.
  • 5LIU Y, XU B S, WU Y L, et al. Boundary control of an axially moving belt [ C ] /J Chinese Control Conf. Xi'anChina, 2013 : 1228 - 1233.
  • 6KRSTIC M, SMYSHLYAEV A. Backstepping boundary controller and observer designs for the slender Timosh- enko beam [ C ]//Proc of IEEE Conference on Decision and Control. Seville : IEEE Press, 2005 : 1 - 8.
  • 7ENDO T, MATSUNO F, KAWASAKI H. Simple boundary cooperative control of two one-link flexible arms for grasping [ J ]. IEEE Transactions on Automatic Control, 2009, 54(10): 2470-2476.
  • 8ZHANG L J, LIU J K. Adaptive boundary control for flexible two-link manipulator based on partial differential equation dynamic model [ J ]. IET Control Theory and Applications, 2013, 7( 1 ): 43-51.
  • 9张德江,张袅娜,冯勇.参数不确定柔性机械手的快速终端滑模控制[J].控制与决策,2010,25(3):433-436. 被引量:11
  • 10丁希仑,张启先.机器人柔性臂动力学建模的D-Holzer法[J].机械工程学报,1999,35(3):25-28. 被引量:9

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部