期刊文献+

基于meta-种群理论的免疫遗传算法 被引量:3

Immune genetic algorithm based on meta-population
下载PDF
导出
摘要 自然meta-种群中局部种群之间存在相对隔离和种群个体冒险迁徙的机制,提出了一种基于meta-种群理论的免疫遗传算法。该算法模拟了自然meta-种群中局部种群克隆、生殖、变异和自然灭绝等自然过程。其主要步骤包括初始种群,种群及其个体适应度计算,选择,克隆变异、交叉生殖、含记忆B细胞个体克隆和局部种群灭绝及其最优个体的冒险迁徙等。该算法的特点是模拟了meta-种群的自然机制,具有并行性,能够产生高适应能力的个体并不断地更新,直到最优个体的出现。对两种问题进行了模拟实验,并与普通遗传算法IMA进行了比较,结果表明所提出的算法能以较少的迭代次数完成最优解的寻找。 There are the isolation correspondingly and the migration of risk between the populations in the meta-population. So this paper proposed a new optimization algorithm based on the meta-population theory. The algorithm simulated the natural process of the meta-population mechanism, such as initial the populations, the fitness of the population and the individual, selecting, cloning and mutating, crossover procreating, cloning of the mnemonic B ceils, the depopulation of the sub-population, and the migration of risk of the best individual. The advantages were that the algorithm simulated the meta-population' s natural mechanism, produced and updated the good optimum until the best one appeared, and had the parallelism. The method was utilized to optimize the two problems, the simulation results show that the algorithm can find the better optimum than the common IGA at the same iterative times.
出处 《计算机应用研究》 CSCD 北大核心 2008年第5期1312-1314,共3页 Application Research of Computers
基金 国家自然科学基金资助项目(60672018) 厦门大学院士基金资助项目
关键词 meta-种群 免疫遗传算法 记忆B细胞 优化 meta-population immune genetic algorithm(IMA) nmemonic B cell optimization
  • 相关文献

参考文献9

  • 1陶毅.Meta一种群的理论与实践[C]//中国科学院生物多样性委员会.生物多样性研究的原理和方法.北京:中国科学技术出版社.1994:55-68.
  • 2罗印升,李人厚,张雷,刘芳.人工免疫算法在函数优化中的应用[J].西安交通大学学报,2003,37(8):840-843. 被引量:26
  • 3吴芸,周昌乐,张志枫.中医舌诊八纲辨证神经网络知识库构建[J].计算机应用研究,2006,23(6):188-189. 被引量:23
  • 4王自强,冯博琴.分类规则挖掘的免疫算法[J].西安交通大学学报,2005,39(2):111-114. 被引量:5
  • 5CLUNE J, GOINGS S, PUNCH B, et al. Investigations in meta- GAs: pananceas or pipe dreams? [ C ]//Proc of Workshop on Genetic and Evolutioncery Computation. New York: ACM Press, 2005:235- 241.
  • 6JUANG C F, LIOU Y C. On the hybrid of genetic algorithm and particle swarm optimization for evolving recurrent neural network [ C ]// Proc of International Joint Conference on Neural Network. 2004: 2285-2288.
  • 7TAN Zheng-hua. Hybrid evolutionary approach for designing neural networks for classification [ J ]. IEEE Electronics Letters, 2004,40 (15) :955-957.
  • 8XIAO Shou-zhong, PENG Cheng-lin, WANG Zhi-sheng, et al. Using the algebraic sum method in medical expert systems[J]. IEEE Engineering in Medicine and Biology, 1996,15(3):80-82.
  • 9WANG Wei-yen. Evolutionary learning of BMF fuzzy-neural network using a reduced-form genetic algorithm [ J ]. IEEE on Systems, Man and Cybe meties: Part B, 2003,33 (6) :966- 976.

二级参考文献18

  • 1宋红,林家瑞.用于医学辅助诊断的神经网络方法的应用研究[J].生物医学工程学杂志,1996,13(2):141-144. 被引量:16
  • 2杨延彬.免疫学及检验[M].北京:人民卫生出版社,1999.1-65.
  • 3de Castro L, von Zuben F. Artificial immune system part I. basic theory and applications[R/OL] . http://www. dca. fee. unicamp.br/~lnmunes, 2002-02-15.
  • 4de Castro L, von Zuben F. Artificial immune system part Ⅱ:a survey of applications[R/OL]. http.//www. dca. fee. unicamp, br/~lnmunes, 2002-02-10.
  • 5Timmis J, Neal M, Hunt J. Artificial immune systems for data analysis[J].Biosystem,2000,55(1/3):143-150
  • 6Srinivas M, Patnaik L M. Adaptive probabilities of crossover and mutation in genetic algorithms[J]. IEEE Trans on System, Man, and Cybernetics , 1994,24(4):656~667.
  • 7Han J W, Kamber M. Data mining: concepts and techniques [M]. San Mateo, USA.. Morgan Kauf-mann Publishers, 2000. 185-211.
  • 8Yang L Y, Widyantoro D H, Ioerger T, et al. An entropy-based adaptive genetic algorithm for learning classifieation rules [A]. The 2001 Congress on Evolutionary Computation, Seoul, South Korea, 2001.
  • 9Carvalho D R, Freitas A A. A hybrid decision tree/genetic algorithm for coping with the problem of small disjuncts in data mining [A]. The Genetic and Evolutionary Computation Conference, Las Vegas, USA,2000.
  • 10Jiao L C, Wang L. A novel genetic algorithm based on immunity [J]. IEEE Transactions on Systems, Man Cybernetics , 2000,30 (5) : 552-561.

共引文献51

同被引文献15

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部