期刊文献+

基于模拟退火算法的可逃逸粒子群算法 被引量:6

Escapable particle swarm optimization based on simulated annealing algorithm
下载PDF
导出
摘要 通过引入模拟退火算法来保证PSO的全局收敛性,在群体最优信息陷入停滞时引入位置逃逸机制保持前期搜索速度快的特性。仿真结果表明本算法不但具有好的全局收敛性,而且有好的收敛速度。 This paper guaranteed to converge to the globe optimum by using the simulated annealing algorithm, when the optimum information of the warm was stagnant, the position escapable mechanism could maintain the characteristic of fast speed in the early convergence phase. Experimental simulations show that the proposed method can not only effectively converge to the globe optimum, but also significantly speed up the convergence.
作者 王伟 殷志祥
出处 《计算机应用研究》 CSCD 北大核心 2008年第5期1326-1327,1339,共3页 Application Research of Computers
基金 国家自然科学基金资助项目(60274026,30570431) 安徽省优秀青年基金资助项目(06042088) 安徽省教育厅自然科学重点资助项目(2006kj068A) 安徽省优秀人才基金资助项目 中国博士后科学基金资助项目(2004035196) 新世纪人才支持计划资助项目
关键词 微粒群优化 模拟退火算法 逃逸位置 particle swarm optimization(PSO) simulated annealing algorithm escape position
  • 相关文献

参考文献10

  • 1KENNEDY J, EBERHART R. Particle swarm optimization [ C ]//Proc of IEEE Int Conf on Neural Networks. Perth: [s. n. ], 1995: 1942-1948.
  • 2EBERHART R, KENNEDY J. A new optimizer using particle swarm theory[ C]//Proc of the 6th Int Symposium on Micro Machine and Human Science. Nagoya: [s. n. ], 1995:39-43.
  • 3SHI Y, EBERHART R C. A modified particle swarm optimizer[ C]// Proc of IEEE International Conference on Evolutionary Computation. Piscataway : IEEE Press, 1998:69-73.
  • 4SUGANTHAN P N. Particale swarm optimizer with neighbourhood operator[ C]//Proc of Congress on Evolutionary Computation. Piscataway: IEEE Press, 1999 : 1958-1961.
  • 5KENNEDY J. Small worlds and mega-minds: effects of neighbourhood topology on particle swarm performance [ C ]//Proc of Congress on Evolutionary Computation. Piscataway: IEEE Press, 1999 : 1931- 1938.
  • 6KENNEDY J. Stereotyping: improving particle swarm performance with cluster analysis [ C ]//Proc of Congress on Evolutionary Computation. Piscataway : IEEE Press, 2000 : 1507-1512.
  • 7BERGH F V D, ENGELBRECHT A P. Cooperative learning in neural networks using particle swarm optimizers [ J ]. South African Computer Journal, 2000, 26 ( 11 ) : 84-90.
  • 8曾建潮,崔志华.一种保证全局收敛的PSO算法[J].计算机研究与发展,2004,41(8):1333-1338. 被引量:160
  • 9van den BERGH F. An analysis of particle swarm optimization [ D ]. Pretoria : University of Pretoria, 2001.
  • 10KANG Li-shan, XIE Yun, YOU Shi-yong. Nonnumefic parallel algorithm-simulated annealing algorithm [ M ]. Beijing: Science Press, 1994.

二级参考文献7

  • 1P N Suganthan. Particle swarm optimiser with neighbourhood operator. In: Proc of the Congress on Evolutionary Computation.Piscataway, NJ: IEEE Service Center, 1999. 1958~1962
  • 2E Ozcan, C Mohan. Particle swarm optimization: Surfing the waves. In: Proc of the Congress on Evolutionary Computation.Piscataway, NJ: IEEE Service Center, 1999. 1939~1944
  • 3M Clerc, J Kennedy. The particle swarm: Explosion, stability and convergence in a multi-dimensional complex space. IEEE Trans on Evolutionary Computation, 2002, 6(1): 58~73
  • 4F Solis, R Wets. Minimization by random search techniques.Mathematics of Operations Research, 1981, 6(1 ): 19~ 30
  • 5F Van den Bergh. An analysis of particle swarm optimizers: [ Ph D dissertation]. Pretoria: University of Pretoria, 2001
  • 6王凌.智能优化算法及其应用.北京:清华大学出版社,2001( Wang Ling. Intelligent Optimization Algorithms with Applications( in Chinese) . Beijing: Tsinghua University Press,2001)
  • 7J Holland. Adaption in Natural and Artificial Systems. Ann Arbor, MI: University of Michigan Press, 1975

共引文献159

同被引文献57

  • 1郑焕章,孙大为.环京津区域创新体系建设及对策研究[J].河北经贸大学学报,2005,26(1):84-88. 被引量:4
  • 2武妍,徐敏.一种改进的粒子群优化算法[J].计算机工程与应用,2006,42(33):40-42. 被引量:19
  • 3蒋国瑞,杨晓燕,李立伟.第四方物流的分布式数据挖掘系统研究[J].情报杂志,2007,26(1):15-17. 被引量:8
  • 4方平.从第三方物流到第四方物流——世界领先物流企业的启示[J].现代管理科学,2007(5):86-87. 被引量:5
  • 5Anna Bergek, Staffan Jacobsson, Bo Carlsson, Sven Lindmark, Annika Richne. Analyzing the functional dynamics of technological innovation systems: hscheme of analysis. Research Policy, 2008,(3):407-429.
  • 6Von Hippel, E. The sources of Innovation. New York: Oxford University Press, 1988.
  • 7Clesbrough, H. Open Innovation: The New Imperative for Creating and Profiting from Technology. Harvard Business School Press, Cambridge, MA.,2003.
  • 8Kennedy J, Eberhart R. Particle swarm optimization. Proceedings of IEEE International Conference on Neural Networks, Piscataway: IEEE Service Center, 1995:1942-1948.
  • 9Metropolis N, Rosenbluth M. Equation of state calculations by fast computing machines. Journal of Chemical Physics, 1953,(21):1087-1092.
  • 10Clerc M. The swarm and the queen: Towards a deterministic and adaptive particle swarm optimizatiol.Proceedings of the Congress of Evolutionary Computation, Washington, 1999: 1951-1957.

引证文献6

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部