期刊文献+

边界保存的二进小波图像去噪算法 被引量:4

Edge-preserved image denoise algorithm based on dyadic wavelet transform
下载PDF
导出
摘要 根据小波变换系数与图像边界的关系,提出了一种基于二进小波变换的图像去噪算法。首先用二进小波在不同尺度上分解图像,在低频部分上提取图像边界,根据图像边界与小波系数的关系,估计对应尺度上高频部分的噪声的方差,用Oracle估计子估计图像的二进小波系数,用估计出的二进小波系数重建图像。实验表明,该算法能够有效地去除各种分布的图像噪声。 A new algorithm of image noise reduction based on dyadic wavelet transform was proposed. Firstly, extract edge from the smooth part of image at different scales. Then estimated the variance of noise in every subband, computed the Oracle estimator and estimate dyadic wavelet coefficients of image at the scale. Finally, restored the image from the estimated coefficients. Experiments show this algorithm can eliminate noise with different distribution.
出处 《计算机应用研究》 CSCD 北大核心 2008年第5期1596-1597,1600,共3页 Application Research of Computers
关键词 二进小波变换 边界 Oracle估计子 去噪 dyadic wavelet transform edge Oracle estimator denoise
  • 相关文献

参考文献10

  • 1GONZALEZ R C,WOODS R E.数字图像处理[M].阮秋琦,阮宇智,译.北京:电子工业出版社,2002:175-202.
  • 2KAZUBEK M. Wavelet domain image denoising by thresholding and Wiener filtering[ J ]. I EEE Signal Processing, 2003,10 ( 11 ) : 324- 326.
  • 3DONOHO D L. De-noising by soft-thresholding[ J ]. I EEE Trans on Information Theory,1995,41 (3) :613-627.
  • 4ABRAMOVICH F, SAPATINAS T, SILVERMAN B W. Wavelet thresholding via a Bayesian approach[ J ]. Journal of the Royal Statistical Society, 1998,60:725-749.
  • 5CHANG S G, YU B, VETTERLI M. Adaptive wavelet thresholding for image denoising and compression[ J]. IEEE Trans on Image Processing,2000,9:1532-1546.
  • 6CHANG S G, YU B, VETTERLI M. Spatially adaptive wavelet thresholding with context modeling for image denoising[ J]. IEEE Trans on Image Processing,2000,9(9) :1522-1531.
  • 7PRUDYUS I, VOLOSHYNOVSLUY S, YNYAVSKYY A S. Waveletbased MAP image denoising using provably better class of stochastic i. i. d. image models [ J ]. Facta Universitafis ( Nis ) Series: Electronics and Energetics,2001,14(3 ) :3?5-385.
  • 8BHARATH A A, NG J. A steerable complex wavelet construction and its application to image denoising [ J ]. IEEE Trans on Image Processing ,2005,14 ( 77 ) :948- 959.
  • 9EOM I K, KIM Y S. Wavelet-based denoising with nearly arbitrarily shaped Windows[J]. IEEE Signal Processing,2004,11 (12) :937-940.
  • 10MALLAT S.信号处理的小波导引[M].2版.杨力华,戴道清,黄文良,等译.北京:机械工业出版社,2002.

共引文献8

同被引文献29

  • 1张艳群,孟凡荣.MATLAB在图像边缘检测中的应用[J].计算机应用研究,2004,21(6):144-146. 被引量:23
  • 2倪虹霞,杨信昌,陈贺新.基于小波自适应阈值的图像去噪方法[J].吉林大学学报(信息科学版),2005,23(4):445-448. 被引量:11
  • 3方勇华,孔超,兰天鸽,熊伟,董大明,李大成.应用小波变换实现光谱的噪声去除和基线校正[J].光学精密工程,2006,14(6):1088-1092. 被引量:44
  • 4刘成云,陈振学,马于涛.自适应阈值的小波图像去噪[J].光电工程,2007,34(6):77-81. 被引量:45
  • 5DO M N, VEITERLI M. Contoudets: a directional multiresolutionimage representation[C]. Proc ICIP,2002:357 - 360.
  • 6DO M N, VETFERLI M. The contourlet transform: an efficient directional multiresolution image representation[J]. IEEE Tram Image Processing, 2005,14(12) :2091 - 2106.
  • 7WANG Z, ZHANG D. Progressive switching median filter for the removal of impulse noise from highly corrupted images[J].IEEE Tram. on Circuits and Systems, Ⅱ : Analog and Digital Signal Processing, 1999,46(1):78-80.
  • 8TI DSP大奖赛组委会.TIDSP大奖赛获奖成果汇编[c].北京:电子工业出版社.2007.
  • 9MALLAT S, ZHONG S. Characterization of signals from muhiscale edges[J]. IEEE Yrans on Pattern Analysis and Machine Intelligence, 199:2,14(7) :710-732.
  • 10SHENSA M J. The discrete wavelet transform: wedding the a trous and Mallat algorithms [ J ]. IEEE Trans on Signal Processing, 1992,40(10) :2464-2482.

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部