期刊文献+

一种针对高维决策空间的进化多目标优化方法 被引量:3

Evolutionary Multiobjective Optimization Method for High Dimensional Decision Space
下载PDF
导出
摘要 进化算法可并行处理多个解的特性使得它特别适合解决多目标优化问题。针对高维决策空间,将基因表达式编程引入多目标优化,设计了新的个体结构和操作,提出了一个进化多目标优化算法EMOGEP。实验结果表明,新算法在低维决策空间是可行和有效的;在高维决策空间中,表现出了比传统进化多目标优化算法更好的性能;多模态情况下,新算法能很好的逼近理论Pareto前沿。 Evolutionary algorithms are particularly suited for Multiobjective Optimization Problem (MOP), because they process a set of solutions in parallel. Aiming at high dimensional decision space, an innovative algorithm named Evolutionary Multiobjective Optimization Gene Expression Programming (EMOGEP) was presented. A new structure for individual was designed and some genetic operators were proposed. Experiment results show that EMOGEP is feasible and effective in low dimensional decision space. Especially in high dimension, EMOGEP performs better than traditional EMO algorithms. In the circumstance of multimodality, EMOGEP approximately converges to the true Pareto-optimal front.
出处 《系统仿真学报》 EI CAS CSCD 北大核心 2008年第9期2329-2333,共5页 Journal of System Simulation
基金 国家自然科学基金资助项目(60773169) 四川省教育厅资助科研项目(2006B067) 成都电子机械高等专科学校科研项目(KY061007B) 天津师范大学引进人才基金项目(5RL062)
关键词 高维 多目标优化 进化算法 基因表达式编程 high dimension multiobjective optimization evolutionary algorithm gene expression programming
  • 相关文献

参考文献10

  • 1Schaffer J D, Multiple objective Optimization with vector evaluated genetic algorithms [C]// Proceedings of 1st International Conference on Genetic Algorithms, 1985. Mahwah, New Jersey: Lawrence Erlbaurn Associates, 1985: 93-100.
  • 2Carlos A. Evolutionay Multi-Objective Optimization: A Historical View of the Field [J]. IEEE Cornputational Intelligence Magazine (S1556-603X), 2006, 1(1): 28-36.
  • 3Zitzler E, Thiele L. Multiobjective Evolutionary Algorithms: A Comparative Case Study and the Strength Pareto Approach [J]. IEEE Trans on Evolutionary Computation (S1089-778X),1999,3(4): 257-271.
  • 4Ferreira C. Gene Expression Programming: A New Adaptive Algorithm for Solving Problems [J]. Complex Systems (S0891-2513), 2001, 13(2): 87-129.
  • 5Qiao Sbaojie, Tang Cbangjie, Peng Jing, et al. VCCM Mining: Mining Virtual Community Core Members Based on Gene Expression Programming [C]// H Cben, et al. (Eds.). WISI 2006, LNCS 3917. Berlin: Springer-Veflag, 2006: 133-138,
  • 6曾涛,唐常杰,向勇,刘胤田,邱江涛,代术成.一种基于频繁k元一阶元规则的多维离散数据挖掘模型[J].四川大学学报(工程科学版),2007,39(5):121-126. 被引量:3
  • 7Zitzler E, Laumanns M, Thiele L. SPEA2: Improving the Strength Pareto Evolutionary Algorithms JR]// Technical report 103, Computer Engineering and Networks Laboratory (TIK). Zurich, Gloriastrasse 35, Ch-8092 Zurich, Switzerland: Swiss Federal Institute of Technology(ETH), May 2001.
  • 8Deb K. Multi-objective Genetic Algorithms: Problem difficulties and construction of test problem [J]. Evolutionary Computation (S1063-6560), 1999, 7(3): 205-230.
  • 9Zhong-Yao Zhu. An evolutionary approach to multi-objective optimization problems [D]. Hong Kong: The Chinese University of Hong Kong, 1995.
  • 10Zitzler E, Thiele L. Comparison of Multiobjective Evolutionary Algorithms: Empirical Results [J]. Evolutionary Computation (S1063-6560), 2000, 8(2): 173-195.

二级参考文献10

  • 1曾涛,唐常杰,朱明放,向勇,刘胤田,陈鹏.基于人工免疫和基因表达式编程的多维复杂关联规则挖掘方法[J].四川大学学报(工程科学版),2006,38(5):136-142. 被引量:14
  • 2Agrawal R,Imiclinski T,Swami A.Database mining:A performance perspective[J].IEEE Trans Knowledge and Data Enginnering,1993,5:914-925.
  • 3Agrawal R,Srikant R.Fast algorithm for mining association rules[C] // Proc of the 1994 International Conference Very Large Data Bases (VLDB'94),Santiago:Chile,1994:487-499.
  • 4Han Jiawei,Kamber M.Data mining-concepts and techniques[M].Beijing:Higher Education Press,2001.
  • 5Xin D,Han J,Yan X F,et al.Mining compressed frequent-pattern Sets[C]//Proc of the 31st VLDB Conference.Trondheim,Norway,2005:709-720.
  • 6Fu Y,Han J.Meta-rule-guided mining of association rules in relational databases[C]//Proc of the First Int'l Workshop Integration Knowledge Discovery with Deductive and Object-Oriented Databases (KDOOD'95).Singapore,1995:39-46.
  • 7Yin Xiaoxin,Han Jiawei.CPAR:classification based on predictive association rules[C]//Proc of the SIAM Int Conf on Data Mining (SDM'03).San Francisco,CA,2003:331-335.
  • 8Pasquier N,Bastide Y,Taouil R,et al.Discovering frequent closed itemsets for association rules[C]//Proc of the 7th International Conference on Database Theory (ICDT'99).Jerusalem,Israel,1999:398-416.
  • 9Gouda K,Zaki M.Efficiently mining maximal frequent itemsets[C]//Proc of the 2001 IEEE International Conference on Data Mining (ICDM'01).San Jose,2001:163-170.
  • 10Silberschatz A,Korth H F,Sudarshan S.Databse system concepts[M].4th Ed.McGraw-Hill Computer Science Series,2001.

共引文献2

同被引文献33

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部