期刊文献+

基于高斯曲率极值点的散乱点云数据特征点提取 被引量:31

Extracting Feature Points for Scattered Points Based on Gauss Curvature Extreme Point
下载PDF
导出
摘要 提出了一种快速提取散乱点云数据特征点方法,首先求出空间一点邻域内的曲面片模型,在此基础上利用梯度法搜索曲面上的高斯曲率极值点。然后再以该点作为搜索曲率极值点的初始点,根据判定准则搜索该点附近的曲率极值点。曲率极值点的搜索方法是边拟合局部曲面边搜索高斯曲率极值点,在搜索曲率极值点时,只需计算高斯曲率极值点附近点的曲率值。避免了传统算法中由于需要求出所有测量点的曲率值,然后进行比较求得曲率极值点而耗时间的缺点,从而提高了搜索效率。 A fast method was proposed to extract the feature points from scattered point sets. A local surface was constructed from a spatial point and its nearest neighbors, from which the maximal point of Gaussian curvature was computed by means of gradient searching. Taking this point as start point, the maximal curvature point was searched near the area of this point. An advantage of the scheme is the local surface was fitted, at the same time, the maximal point of Ganssian curvature was computed. When the maximal curvature point was calculated, only the area of maximal Gaussian curvature was searched, It could avoid the drawback of the computing the curvature for the whole points and the time cost of comparing the maximal curvatue point. So the new scheme has higher searching efficiency.
出处 《系统仿真学报》 EI CAS CSCD 北大核心 2008年第9期2341-2344,共4页 Journal of System Simulation
基金 国家自然科学基金资助项目(50505009)
关键词 特征点提取 曲率极值点 反求工程 高斯曲率 feature point extraction curvature extreme point reverse engineering Gaussian curvature
  • 相关文献

参考文献9

  • 1Yang M, Lee E. Segmentation of measured data using a parametric quadric surface approximation [J]. Computer Aided Design (S1573-4099), 1999, 31(7): 449-457.
  • 2Woo H, Kang E, Wang Sem-yung, et al. A new segmentation method for point cloud data [J]. International Journal of Machine Tools and Manufacture (S0890-6955), 2002, 42(2): 167-178.
  • 3吕震,柯映林,孙庆,王军文,黄小平.反求工程中过渡曲面特征提取算法研究[J].计算机集成制造系统-CIMS,2003,9(2):154-157. 被引量:26
  • 4Huang J, Menq C H. Automatic data segmentation for geometric feature extraction from unorganized 3-D coordinate points [J]. IEEE Transactions on Robotics and Automation (S1042-296X), 2001, 17(3): 268-279.
  • 5胡鑫,习俊通,金烨.反求工程中散乱点云数据的自动分割与曲面重构[J].上海交通大学学报,2004,38(1):62-65. 被引量:30
  • 6Jun Yongtae, Choi Kuiwon. Automated feature-based registration for reverse engineering of human models [J]. Journal of Mechanical Science andTechnology (S1738-494X), 2005, 19(12): 2213-2223.
  • 7Tahir Rabbani, Sander Dijlanan. An integrated approach for modeling and global registration of point clouds [J]. ISPRS Journal of Photogrammetry and Remote Sensing (S0924-2716), 2007, 2(61): 355-370.
  • 8吴大任.微分几何讲义[M].北京:人民教育出版社,1984:126-128.
  • 9刘胜兰,周儒荣,安鲁陵.三角网格模型的数据分块算法[J].南京航空航天大学学报,2003,35(6):653-658. 被引量:6

二级参考文献24

  • 1[1]Fitzgibbon A W, Eggert D W, Fisher R B. Highlever CAD model acquisition[J]. Computer Aided Design, 1997,29 (4): 321- 330.
  • 2[3]Yang M, Lee E. Segmentation of measured point data using a parametric quadric surface approximation [J]. Computer Aided Design, 1999,31 (7): 449- 457.
  • 3[4]SunW, Bradley C, Zhang Y F, et al. Cloud data modeling employing a unified, non-redundant triangular mesh[J]. Computer Aided Design ,2001,33(3):183-193.
  • 4[5]Hoppe H, De R T, Duchamp T. Surface reconstruction from unorganized points [J]. Computer Graphics,1992,26(2):71-78.
  • 5[6]Oblonsek C, Guid N. A fast surface-based procedure for object reconstruction from 3D scattered points [J]. Computer Vision and Image Understanding,1998,69(2): 185- 195.
  • 6[8]Chen Y H, Liu C Y. Quadric surface extraction using genetic algorithms [J ]. Computer Aided Design,1999,31 (2):101-110.
  • 7[9]Cohen F S, Ibrahim W, Pintavirooj C. Ordering and parameterizing scattered 3D data for B-spline surface approximation [J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2000,22 (6): 642-648.
  • 8[10]Bae S H, Choi B K. NURBS surface fitting using orthogonal coordinate transform for rapid product development [J]. Computer Aided Design, 2002,34 (8):683-690.
  • 9LUKACS G,MARTIN R,MARSHALL D.Faithful least-squares fitting of spheres, cylinders, cones and tori for reliable segmentation[A].Proceedings of 5th European Conference on Computer Vision[C]. Freiburg, Germany, 1998. 671-686.
  • 10MARSHALL D, LUKACS G,MARTIN R. Robust segmentation of primitives from range data in the presence of geometric degeneracy[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(5): 304-314.

共引文献59

同被引文献258

引证文献31

二级引证文献194

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部