期刊文献+

基于神经网络和Markov链的交通流实时滚动预测 被引量:12

Real-time Rolling Traffic Flow Forecasting Based on Neural Networks and Markov Chains
下载PDF
导出
摘要 将神经网络与Markov链理论应用于随机波动的交通流预测,提出一种交通流实时滚动预测方法TDFNM。该方法采用BP网络构建交通流基准预测曲线,使用SOM网络划分残差的Markov链状态,计算各状态加权中心及状态转移概率矩阵,以此预测未来状态,并以加权中点修正计算得到精度较高的预测值,同时实现实时滚动预测。采用方法TDFNM对实测交通流量进行仿真实验,结果表明,该方法比常规BP网络具有更高的准确性,而且具有较强的适应性。 Neural networks and Markov chains were studied to forecast traffic flow, which has great randomness and fluctuation. A method (TDFNM) for real-time rolling traffic flow forecasting was proposed. This method used a BP neural network to establish a forecasting baseline. A SOM neural network was applied to divide the residual errors into different status for Markov chain. Then status weighting centers and status transition probability matrices were calculated. Subsequently, the status transformation was analyzed to determine the most possible status of the predicted value, and then the corresponding weighting center was used to revise the predicted value to achieve the more accurate one. Meanwhile, the traffic flow real-time rolling forecasting was realized. Using method TDFNM to conduct a simulation experiment on real data, the results demonstrate that this method is superior to the common BP neural networks in precision and has good adaptability to the dynamic traffic flow environment.
出处 《系统仿真学报》 EI CAS CSCD 北大核心 2008年第9期2464-2468,共5页 Journal of System Simulation
基金 重庆市科委自然科学基金(CSTC 2006BA6016)
关键词 智能交通系统 交通流预测 神经网络 MARKOV链 intelligent transportation systems traffic flow forecasting neural networks markov chains
  • 相关文献

参考文献14

  • 1Smith Brian L, Williams Billy M, Keith Oswald R. Comparison of Parametric and Nonparametric Models for Traffic Flow Forecasting [J]. Transportation Research Part C: Emerging Technologies (S0968-090X), 2003, 10(4): 303-321.
  • 2Williams Billy M, Hoel Lester A. Modeling and Forecasting Vehicular Traffic Flow as a Seasonal ARIMA Process: Theoretical Basis and Empirical Results [J]. Journal of Transportation Engineering (S0733-947X), 2003, 129(6): 664-672.
  • 3韩超,宋苏,王成红.基于ARIMA模型的短时交通流实时自适应预测[J].系统仿真学报,2004,16(7):1530-1532. 被引量:94
  • 4Messai Nadhir, Thomas Philippe, Lefebvre Dimitri, et al. A Neural Network Approach for Freeway Traffic Flow Prediction [C]// Proceedings of the 2002 IEEE International Conference on Control Applications (S1085-1992), Glasgow, Scotland, U K, Sep. 18-20, 2002. USA: IEEE, 2002, 2: 984-989.
  • 5Stathopoulos A, Karlafits G M. A Multivariate State Space Approach for Urban Traffic Flow Modeling and Prediction [J]. Transportation Research Part C: Emerging Technologies (S0968-090X), 2003, 11(2): 121-135.
  • 6陈新全,侯志祥,吴义虎,刘振闻.无检测器交叉口交通流量预测的灰色神经网络模型[J].系统仿真学报,2004,16(12):2655-2656. 被引量:8
  • 7王晓原,刘海红.基于投影寻踪自回归的短时交通流预测[J].系统工程,2006,24(3):20-24. 被引量:18
  • 8Li Cuifeng. Grey Markov Model Based on Parameter Fits and its Application in Stock Price Prediction [C]// Proceedings of the Sixth International Conference on Intelligent Systems Design and Applications (ISDA'06), Jinan, China. China: IEEE Press, October, 2006, 1: 594-598.
  • 9赵希人,彭秀艳,姜广宇.基于神经网络方法的大型电网短期负荷预报[J].系统仿真学报,2006,18(6):1677-1680. 被引量:12
  • 10薛峰,张佑生,江巨浪,胡敏,汪家权.基于改进SOM的纹理合成算法[J].系统仿真学报,2006,18(3):581-585. 被引量:7

二级参考文献47

  • 1刘云生,查亚兵,张传富,张童,黄柯棣.分布式仿真系统容错机制研究[J].系统仿真学报,2005,17(2):355-357. 被引量:10
  • 2张敬磊,王晓原.交通事件检测算法研究进展[J].武汉理工大学学报(交通科学与工程版),2005,29(2):215-218. 被引量:56
  • 3刘大秀,郑祖国,葛毅雄.投影寻踪回归在试验设计分析中的应用研究[J].数理统计与管理,1995,14(1):47-51. 被引量:29
  • 4王晓原,吴磊,张开旺,张敬磊.非参数小波算法的交通流预测方法[J].系统工程,2005,23(10):44-47. 被引量:14
  • 5丹尼尔·L·鸠洛夫 马休·J·休伯.交通流理论[M].北京:人民交通出版社,1983..
  • 6Efros Alex A, Leung Thomas K. Texture synthesis by non-parametric sampling[C]// In: International Conference on Computer Vision.Greece:IEEE press, 1999: 1033-1038.
  • 7Wei LiYi, M arc Levoy. Fast texture synthesis using tree-structured vector quantization[C]//In: Proceedings of SIGGRA PH'2000. New Orleans, 2000: 479-488.
  • 8Ashikhmin Michael. Synthesizing natural textures[C]//In: 2001 ACM Symposium on Inter2active 3D Graphics. North Carolina: Research Triangle Park, 2001 : 217-226.
  • 9Alexei A. Efros, William T. Freeman. Image quilting for texture synthesis and transfer[C]//In: Proceedings of SIGGRAPH'2001. Los Angeles, 2001 : 341-347.
  • 10L Liang, C Liu, Y-Q Xu, B Guo, H-Y Shum. Real-time texture synthesis by patch-based sampling[R]. Technical Report MSR-TR-2001-40, Microsoft Research, March 2001.

共引文献132

同被引文献108

引证文献12

二级引证文献98

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部