摘要
轧钢加热炉系统具有多变量、非线性、大滞后、交叉耦合等特性,钢坯出炉温度的预报模型一直是个难题。仍然采用统计建模的思路,利用独立分量分析方法不依赖分布假设的优点,建立了钢坯温度变量和过程变量之间的独立分量回归预测模型。基于轧钢厂实际生产数据进行了建模与验证实验,误差比较分析表明,该模型能较好地预测钢坯出炉温度,且预测误差指标优于基于改进PCA的预报模型。
Reheating furnace is a multivariable nonlinear system with large inertia, net lag and crossed coupling. So the estimate of main gtlide line of its product quality--billet temperature--is all along a puzzle in the process. Independent component regression (ICR) model between billet temperature variable and process variable was established with multi-statistic projection principle and ICA method. Based on a steel works actual data and reckoning model parameter, analyzing check and error indicate that this model can forecast billet steel outlet temperature, and the forecasting error can satisfy industry aoolication accuracy demands.
出处
《系统仿真学报》
EI
CAS
CSCD
北大核心
2008年第10期2523-2525,共3页
Journal of System Simulation
关键词
独立分量分析(ICA)
独立分量回归(ICR)
加热炉
钢温模型
independent component analysis (ICA)
independent component regression (ICR)
reheating furnace
billettemperature model