期刊文献+

基于独立分量回归的加热炉钢温预报模型 被引量:4

Billet Temperature Model of Reheating Furnace Based on Independent Component Regression
下载PDF
导出
摘要 轧钢加热炉系统具有多变量、非线性、大滞后、交叉耦合等特性,钢坯出炉温度的预报模型一直是个难题。仍然采用统计建模的思路,利用独立分量分析方法不依赖分布假设的优点,建立了钢坯温度变量和过程变量之间的独立分量回归预测模型。基于轧钢厂实际生产数据进行了建模与验证实验,误差比较分析表明,该模型能较好地预测钢坯出炉温度,且预测误差指标优于基于改进PCA的预报模型。 Reheating furnace is a multivariable nonlinear system with large inertia, net lag and crossed coupling. So the estimate of main gtlide line of its product quality--billet temperature--is all along a puzzle in the process. Independent component regression (ICR) model between billet temperature variable and process variable was established with multi-statistic projection principle and ICA method. Based on a steel works actual data and reckoning model parameter, analyzing check and error indicate that this model can forecast billet steel outlet temperature, and the forecasting error can satisfy industry aoolication accuracy demands.
出处 《系统仿真学报》 EI CAS CSCD 北大核心 2008年第10期2523-2525,共3页 Journal of System Simulation
关键词 独立分量分析(ICA) 独立分量回归(ICR) 加热炉 钢温模型 independent component analysis (ICA) independent component regression (ICR) reheating furnace billettemperature model
  • 相关文献

参考文献8

  • 1Fred Shenvar. Walking beam furnace supervisory control at Inlands' 80-in. hot strip mill [J]. Iron and Steel Engineer (S0021-1559), 1994, 71 (7): 25-34.
  • 2Jaklic A, Kolenko T, Glogovac B. Simulation of billet reheating process in walking beam furnace [J]. Metallurgy (S0543-5846), 2001, 40( 1 ): 23 -27.
  • 3Laurinen Perttu, Roning Juha. An adaptive neural network model for predicting the post roughing mill temperature of steel slabs in the reheating furnace [J]. Journal of Materials Processing Technology (S0924-0136), 2005, 168(3): 423-430.
  • 4肖冬,杨英华,毛志忠.基于改进PCR方法的加热炉钢温预报模型[J].信息与控制,2005,34(3):340-343. 被引量:4
  • 5毕春长,李柠,黄道.钢坯加热炉仿真系统研究[J].系统仿真学报,2004,16(4):663-666. 被引量:8
  • 6Jutten C, Herault J. Independent Component Analysis Versus PCA [C]// Proceedings of EUSIPCO-88. Fourth European Signal Processing Conference. Amsterdam, Netherlands: North-Holland, 1988: 643-646.
  • 7Comon P. Independent Component Analysis-A New Concept [J]. Signal Processing (S0165-1684), 1994, 36(3): 287-314.
  • 8Hyvarinen A. Independent Component Analysis: algorithms and Applications [J]. Neural Networks (S0893-6080), 2000, 13(4): 411-430.

二级参考文献11

  • 1周富民.新余钢铁厂650轧钢加热炉设计与使用情况[J].钢铁设计,1988,(3):55-57,54.
  • 2毕春长.基于二维非稳态导热的加热炉通用钢温预报模型[J].控制与决策,2003,18:332-334.
  • 3Wick H J. Estimation of ingot temperature in a soaking pit using an extended Kalman filter [ A ]. Control Science and Technology for the Progress of Society - Proceedings of the Eighth Triennial World Congress of the IFAC [C]. Oxford, UK: Pergamon Press,1982. 2569 - 2574.
  • 4Wold S. Exponentially weighted moving PCA and PLS [J]. Chemometrics and Intelligent Laboratory Systems, 1994, 23 (3) : 149-159.
  • 5Wise B M, Ricker N L. A theoretical basis for the use of PCA for monitoring multivariate processes [ J]. Process Control and Quality, 1990, 36(2): 21 -51.
  • 6Shenvar F. Walking beam furnace supervisory control at Irdand's 80-in. hot strip mill [J]. Iron and Steel Engineer,1994,71 (7) :25-34.
  • 7Hwang D E, Hart C H. Real-tlme monitoring for a process with multiple operation modes [ J ]. Control Engineering Practice,1999, 37(2) :25 -37.
  • 8巢海,王伟,李小平.步进梁式加热炉钢温预报的数学模型[J].东北大学学报(自然科学版),1998,19(5):499-501. 被引量:15
  • 9柴天佑,王笑波.RBF神经网络在加速冷却控制系统中的应用[J].自动化学报,2000,26(2):219-225. 被引量:43
  • 10李柠,王锡淮,李少远,席裕庚.步进式加热炉炉温建模与优化仿真系统设计[J].系统仿真学报,2001,13(3):361-363. 被引量:16

共引文献8

同被引文献34

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部