期刊文献+

易扩展小样本环境说话人辨认系统的研究

Research on Expansile Speaker Identification System Adapted to Small-Scale Samples
下载PDF
导出
摘要 针对基于人工神经网络的说话人辨认系统所存在的问题,提出了一种基于模糊最小二乘支持向量机(LS-SVMs)技术的两级分类说话人辨认系统。第一级对说话人进行大类预分,第二级则在大类范围内实现具体说话人的辨认。当有新的说话人加入时,只需要增加与新说话人相关的若干个二级分类器。系统仿真实验表明,在训练样本时长取3-11s,说话人由32人增至36人时,本文方法实现的系统训练时间明显降低,识别率更高。 Owing to the drawbacks of ANN-based speaker identification system, a novel speaker identification approach was proposed based on fuzzy LS-SVMs by hierarchical classify. In the first level, speech was classified to the rough class, and during the second level, the actual identification could be got. When speaker number increased, nothing but adding some corresponding classifiers. The experiments show that, when the training speech is 3-1 Is, the number of speakers change from 32 to 36, and the proposed system can not only reduce the training time, but also improve the recognition rate.
出处 《系统仿真学报》 CAS CSCD 北大核心 2008年第10期2779-2781,2788,共4页 Journal of System Simulation
关键词 说话人辨认 易扩展性 最小二乘支持向量机 两级分类 speaker identification expansibility LS-SVMs two-levels classify
  • 相关文献

参考文献10

  • 1李国友,姚磊,李惠光,吴惕华.基于优化的RBF神经网络模式识别新方法[J].系统仿真学报,2006,18(1):181-184. 被引量:22
  • 2Burges J C. A Tutorial on Support Vector Machines for Pattern Recognition [M], USA: Bell Laboratories, Lucent Technologies, 1997.
  • 3张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42. 被引量:2276
  • 4Daisuke Tsujinishi, Yoshiaki Koshiba, Shigeo Abe. Why Pairwise Is Better than One-against-All or All-at-Once [C]// Neural Networks 2004 Proceedings. USA. 2004 IEEE International Joint Conference. 2004: 693-698.
  • 5Hsu C W, Lin C J. A Comparison of Methods for Multi-class Support Vecaor Machine [Z]. 2001.
  • 6T G Dietterich, G Bakiri. Solving Multiclass Learning Problems via Error- Correcting Output Codes [J]. Journal of Artificial Intelligence Research (S11076 - 9757), 1995, 2: 263-286.
  • 7孙林慧,叶蕾,杨震.说话人识别中测试时长与识别率关系研究[J].计算机仿真,2005,22(5):231-233. 被引量:1
  • 8Richard O Duda, Peter E Hart, David G Sore Pattern Classification [M]. USA: John Wiley & Sons, Inc.
  • 9王治平,赵力,邹采荣.基于基音参数规整及统计分布模型距离的语音情感识别[J].声学学报,2006,31(1):28-34. 被引量:26
  • 10Hui Ding, Bo Qian, Yanping Li, and Zhenmin Tang. A Method Combining LPC-Based Cepstrum and Harmonic Product Spectrum for Pitch Detection [C]// IEEE International Conference on IIHMS-2006 Processing. USA: IEEE, 2006: 537-540.

二级参考文献25

  • 1A Jonathan Howell,Hilary Buxton.Learning identity with radial basis function networks [J].Neurocomputing,1998,20:15-34.
  • 2Chen S,Cowan C F N,Grant P N.Orthogonal least squares learning algorithms for radial basis function networks[J].IEEE Trans.Neural Networks.1991,2(2):302-309.
  • 3Orr M J L.Regularization in the selection of radial basis function centers[J].Neural Computation,1995,7:606-623.
  • 4Joannou D,Huda W,Laine A F.Circle Recognition through a 2D Hough transform and radius histogramming[J].Image and vision computing,1999,17:15-26.
  • 5Picard R W. Affective Computing. Cambridge: MIT Press,1997
  • 6Yoshitom Y, KIM S, Kawano T et al. Effect of sensor fusion for recognition of emotional states using voice, face image and thermal image of face. In: Proceedings, 9th IEEE International Workshop on Robot and Human Interactive communication, Osaka, 2000; 1:178-183
  • 7Dellaert F, Polzin T, Waibel A. Recognizing emotion in speech. In: 4th International Conference on Spoken Language Processing, Philadelphia; 1996:1970-1973
  • 8Yacoub S, Simske S, Lin X et al. Recognition of emotions in interactive voice response systems. Hewlett-Pachard Labratories HPL-2003-136, 2003
  • 9Lin X, Chen Y, Lira Set al. Recognition of emotional state from spoken sentenses. In: IEEE 3rd Workshop on Multimedia Signal Processing, Copenhagen, 1999:469-473
  • 10Breazeal C. Regulation and Entrainment in Human-Robot Interaction. International Journal of Robotic Research,2002; 21(10-11): 883-902

共引文献2321

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部