期刊文献+

基于LIB的有色箱覆盖问题

Coloring bin covering problem based on longest item at the bottom
下载PDF
导出
摘要 提出了如下定义的受位置约束的有色箱覆盖问题,即在有色物品的箱覆盖过程中,要求重(长)的物品置于轻(短)的物品下方。该问题是一个新的组合优化问题,来源于多处理器任务调度。给出一个求解该问题的局内近似算法KC-LIBFF算法,分析其最坏情况渐进性能比为0,并给出了相应的实验结果;进一步对求解该问题的局内算法性能比的下界进行了讨论。 A constrained coloring bin covering problem with longest item at the bottom (LIB) is proposed, in which an additional longest item at the bottom is needed if different color items are put into a same bin. This is a new combinatorial optimization problem which has many applications in practice, such as in multiprocessor scheduling and real-world transportation. An approximation algorithm KC-LIBFF is presented to solve the coloring bin covering problem. It is proved that the KC-LIBFF algorithm has an asymptotic worstcase perfor-mance ratio of 0, and the experimental results are given. Moreover lower worst-case bounds of any online algorithms are provided.
作者 杨鼎强
出处 《计算机工程与设计》 CSCD 北大核心 2008年第9期2269-2271,共3页 Computer Engineering and Design
基金 湖南省教育厅科研基金项目(06C126)
关键词 箱覆盖问题 调度问题 组合优化 近似算法 最坏情况渐进性能比 bin-covering problem scheduling combinational optimization approximation algorithm worst-case performance ratio
  • 相关文献

参考文献8

  • 1Kreuzinger J, Schulz A, Pfeffer M, et al. Real-time scheduling on multithreaded processors[C]. Washington, DC: Proceedings on the 7th Intl Conf on Real-Time Systems and Applications, 2000.
  • 2William L, George K, Vipin K. Multi-capacity bin packing algorithms with applications to job scheduling under multiple constraints[C].Aizu-Wakamatsu, Fukushima: International Conference on Parallel Processing, 1999:404-412.
  • 3Jansen K, Solisoba R. An asymptotic fully polynomial time approximation scheme for bin covering[J]. Theoretical Computer Science, 2003,306:543-551.
  • 4Janos C, David S J, Claire K. Better approximation for bin covering[C]. Philadelphia, PA: Proceedings on the Twelfth Symposium on Discrete Algorithms, 2001:557-566.
  • 5Krumke S O, Paepe W E, Stougie J, et al. Online Bincoloring[C]. Denmark: Proceedings of the 9th Annual European Symposium on Algorithms, 2001:74-84.
  • 6顾晓东,许胤龙,陈国良,顾钧.有色装箱问题的在线近似算法[J].计算机研究与发展,2002,39(3):335-341. 被引量:10
  • 7杨鼎强,王晨.受位置约束的有色装箱问题[J].计算机工程与设计,2006,27(20):3864-3866. 被引量:2
  • 8Hall L A. Approximation algorithms for scheduling [M]. Hochbaum D. Approximation for NP-Hard Problems. Boston: PWS Publishing, 1996:1-45.

二级参考文献20

  • 1[1]C L Liu, J Layland. Scheduling algorithms for multi programming in a hard real-time environment. Journal of ACM, 1973, 10(1): 174~189
  • 2[2]A Khemka, R K Shyamasundar. An optimal multiprocessor real-time scheduling algorithm. Journal of Parallel and Distributed Computing, 1997, 43(1): 37~45
  • 3[3]Y Oh. The design and analysis of scheduling algorithms for real-time and fault-tolerant computer systems[Ph D dissertation]. Department of Computer Science, University of Virginia, Vinginia, 1994
  • 4[4]M R Garey, D S Johnson. Computers and Intractability: A Guild to the Theory of NP-Completeness. New York: W H Freeman and Company, 1978
  • 5[5]E G Coffman, M R Garey, D S Johnson. Approximation Algorithms for BinPacking: A Survey. In: D Hochbaum ed. Approximation Algorithms for NP-Hard Problems. Boston: PWS Publishing, 1996. 46~93
  • 6[6]A van Vliet. Lower and upper bounds for on-line bin packing and scheduling heuristic[Ph D dissertation]. Erasmus University, Rotterdam, Netherlands, 1995
  • 7[7]A van Vliet. On the asymptotic worst-case behavior of harmonic fit. Journal of Algorithms, 1996, 20(1): 113~136
  • 8[8]E G Coffman, K So, M Hofri et al. A stochastic model of bin-packing. Inf and Cont, 1980, 44(2): 105~115
  • 9[9]E G Coffman, C Courcoubetis, M R Garey et al. Fundamental discrepancies between average-case analysis under discrete and continuous distributions. In: Proc of the 23rd Annual ACM Symp on Theory of Computing. New York: ACM Press, 1991. 230~240
  • 10[10]D S Johnson. Near optimal bin packing algorithms[Ph D dissertation]. MIT, Massachusetts, 1973

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部